Acknowledgement
This work was supported by the Guangdong Provincial Natural Science Research Team Project: New Energy Efcient Electrical Energy Conversion, 2017B030312001.
References
- Lamburn, D.J., Gibbens, P.W., Dumble, S.J.: Efficient constrained model predictive control. Eur. J. Control. 20(6), 301-311 (2014) https://doi.org/10.1016/j.ejcon.2014.08.001
- Dragicevic, T.: Model predictive control of power converters for robust and fast operation of AC microgrids. IEEE Trans. Power Electron. 33(7), 6304-6317 (2018) https://doi.org/10.1109/tpel.2017.2744986
- Papafotiou, G.A., Demetriades, G.D., Agelidis, V.G.: Technology readiness assessment of model predictive control in medium- and high-voltage power electronics. IEEE Trans. Ind. Electron. 63(9), 5807-5815 (2016) https://doi.org/10.1109/TIE.2016.2521350
- Tavernini, D., Metzler, M., Gruber, P., et al.: Explicit nonlinear model predictive control for electric vehicle traction control. IEEE Trans. Control Syst. Technol. 27(4), 1438-1451 (2019) https://doi.org/10.1109/tcst.2018.2837097
- Mikail, R., Husain, I., Sozer, Y., et al.: A fixed switching frequency predictive current control method for switched reluctance machines. IEEE Trans. Ind. Appl. 50(6), 3717-3726 (2014) https://doi.org/10.1109/TIA.2014.2322144
- Vazquez, S., Leon, J.I., Franquelo, L.G., et al.: Model predictive control: A review of its applications in power electronics. IEEE Ind. Electron. Mag. 8(1), 16-31 (2014) https://doi.org/10.1109/MIE.2013.2290138
- Du, G., Liu, Z., Du, F., et al.: Performance improvement of model predictive control using control error compensation for power electronic converters based on the Lyapunov function. J. Power Electron. 17(4), 983-990 (2017) https://doi.org/10.6113/JPE.2017.17.4.983
- Wang, X., Zhao, J., Wang, Q., et al.: Fast FCS-MPC-based SVPWM method to reduce switching states of multilevel cascaded H-bridge STATCOMs. J. Power Electron. 19(1), 244-253 (2019) https://doi.org/10.6113/JPE.2019.19.1.244
- Liu, J., Cheng, S., Liu, Y., et al.: FCS-MPC for a single-phase two-stage grid connected PV inverter. IET Power Electron. 12(4), 915-922 (2019) https://doi.org/10.1049/iet-pel.2018.5676
- Salinas, F., Gonzalez, M.A., Escalante, M.F.: Finite control set-model predictive control of a flying capacitor multilevel chopper using Petri nets. IEEE Trans. Ind. Electron. 63(9), 5891-5899 (2016) https://doi.org/10.1109/TIE.2016.2578284
- Cortes, P., Member, S., Rodriguez, J., et al.: Predictive current control strategy with imposed load current spectrum. IEEE Trans. Power Electron. 23(2), 612-618 (2008) https://doi.org/10.1109/TPEL.2007.915605
- Tomlinson, M., Mouton, H.D.T., Kennel, R., et al.: A fixed switching frequency scheme for finite-control-set model predictive control-concept and algorithm. IEEE Trans. Ind. Electron. 63(12), 7662-7670 (2016) https://doi.org/10.1109/TIE.2016.2593997
- Tomlinson, M., Mouton, T., Kennel, R.: Finite-control-set model predictive control with a fixed switching frequency vs linear control for current control of a single-leg inverter. Proc. IEEE Int. Symp. PRECEDE, 109-114 (2015)
- Nikhil, P., Sonam, K., Monika, M., et al.: Finite control set model predictive control for two level inverter with fixed switching frequency. Proc. SICE ISCS, 74-81(2018)
- Abdel-Rahim, O., Funato, H., Haruna, J.: An efficient MPPT technique with fixed frequency finite-set model predictive control. Proc. IEEE ECCE, 6444-6449 (2015)
- Sangsefidi, Y., Ziaeinejad, S., Mehrizi-Sani, A.: Low switching frequency-based predictive control of a grid-connected voltage-sourced converter. IEEE Trans. Energy Convers. 32(2), 686-697 (2017) https://doi.org/10.1109/TEC.2016.2642123
- Khosravi, M., Khaburi, D.A., Heshmatian, S.: Predictive control of multi-input switched-capacitor DC-DC converter with reduced switching Frequency. Proc. 8th PEDSTC, 549-554 (2017)
- Rojas, C.A., Aguirre, M., Kouro, S., et al.: Leakage current mitigation in photovoltaic string inverter using predictive control with fixed average switching frequency. IEEE Trans. Ind. Electron. 64(12), 9344-9354 (2017) https://doi.org/10.1109/TIE.2017.2708003
- Aguirre, M., Kouro, S., Rojas, C.A., et al.: Switching frequency regulation for FCS-MPC based on a period control approach. IEEE Trans. Ind. Electron. 65(7), 5764-5773 (2018) https://doi.org/10.1109/tie.2017.2777385
- Aguirre, M., Kouro, S., Rojas, C.A., et al.: Enhanced switching frequency control in fcs-mpc for power converters. IEEE Trans. Ind. Electron (2020). https://doi.org/10.1109/TIE.2020.2973907
- Qi, C., Chen, X., Tu, P., et al.: Deadbeat control for a single-phase cascaded H-bridge rectifier with voltage balancing modulation. IET Power Electron. 11(3), 610-617 (2018) https://doi.org/10.1049/iet-pel.2016.0933
- Sebaaly, F., Vahedi, H., Kanaan, H.Y., et al.: Novel current controller based on MPC with fixed switching frequency operation for a grid-tied inverter. IEEE Trans. Ind. Electron. 65(8), 6198-6205 (2018) https://doi.org/10.1109/tie.2017.2784400
- Tarisciotti, L., Zanchetta, P., Watson, A., et al.: Modulated model predictive control for a three-phase active rectifier. IEEE Trans. Ind. Appl. 51(2), 1610-1620 (2015) https://doi.org/10.1109/TIA.2014.2339397
- Tarisciotti, L., Formentini, A., Gaeta, A., et al.: Model predictive control for shunt active filters with fixed switching frequency. IEEE Trans. Ind. Appl. 53(1), 296-304 (2017) https://doi.org/10.1109/TIA.2016.2606364
- Hu, B., Kang, L., Liu, J., et al.: Model predictive direct power control with fixed switching frequency and computational amount reduction. IEEE J. Emerg. Sel. Top. Power Electron. 7(2), 956-966 (2019) https://doi.org/10.1109/jestpe.2019.2894007
- Garcia, C.F., Silva, C.A., Rodriguez, J.R., et al.: Modulated Model-Predictive Control With Optimized Overmodulation. IEEE J. Emerg. Sel. Top. Power Electron. 7(1), 404-413 (2019) https://doi.org/10.1109/jestpe.2018.2828198
- Yang, Y., Wen, H., Li, D.: A fast and fixed switching frequency model predictive control with delay compensation for three-phase inverters. IEEE Access. 5, 17904-17913 (2017) https://doi.org/10.1109/ACCESS.2017.2751619
- Dang, C., Tong, X., Song, W., et al.: Cost function-based modulation scheme of model predictive control for VIENNA rectifier. IET Power Electron. 12(14), 3646-3655 (2019) https://doi.org/10.1049/iet-pel.2019.0546
- Xie, W., Wang, X., Wang, F., et al.: Finite-control-set model predictive torque control with a deadbeat solution for PMSM drives. IEEE Trans. Ind. Electron. 62(9), 5402-5410 (2015) https://doi.org/10.1109/TIE.2015.2410767
- Rivera, M., Morales, F., Baier, C., et al.: A modulated model predictive control scheme for a two-level voltage source inverter. Proc. IEEE ICIT. 2224-2229 (2015)
- Gurpinar, E., Castellazzi, A.: Tradeoff study of heat sink and output filter volume in a GaN HEMT based single-phase inverter. IEEE Trans. Power Electron. 33(6), 5226-5239 (2018) https://doi.org/10.1109/tpel.2017.2730038
- Valente, M., Iannuzzo, F., Yang, Y., et al.: Performance analysis of a single-phase GaN-based 3L-ANPC inverter for photovoltaic applications. Proc. IEEE SPEC. 1-8(2018)
- IEEE Standard 1547-2003: IEEE standard for interconnecting distributed resources with electric power systems (2009)
- Parvez, M., Elias, M.F.M., Rahim, N.A., et al.: Comparative study of discrete PI and PR controls for single-phase UPS inverter. IEEE Access. 8, 45584-45595 (2020) https://doi.org/10.1109/access.2020.2964603