DOI QR코드

DOI QR Code

Fixed switching frequency strategy for finite-control-set model predictive control based on cost function reconstruction

  • Lei, Yanxiong (School of Electric Power, South China University of Technology) ;
  • Du, Guiping (School of Electric Power, South China University of Technology) ;
  • Zhang, Yuhan (School of Electric Power, South China University of Technology) ;
  • Li, Tuhuan (School of Electric Power, South China University of Technology)
  • Received : 2020.11.21
  • Accepted : 2021.01.21
  • Published : 2021.06.20

Abstract

Considering the spread spectrum problem of finite-control-set model predictive control (FCS-MPC), a fixed switching frequency strategy based on cost function reconstruction is proposed in this paper. It achieves a fixed switching frequency by selecting the optimal voltage vector through the redefined cost function. A frequency coefficient is added to this to change the selecting area of the optimal voltage vector. The proposed strategy reshapes the spectrum of the inductor current and focuses the harmonics near the switching frequency so that the design of the output LC filter is easier. Without adding any modulators or greatly increasing the number of computations, the proposed strategy reserves the excellent dynamic performance of the FCS-MPC and is convenient in terms of implementation. Finally, a 1 kW single-phase inverter is built and experiments are conducted. Experimental results demonstrate that the proposed control strategy realizes a fixed switching frequency. In addition, it has a comparative dynamic response speed and number of calculations when compared to dead-beat-based FCS-MPC. These features are beneficial to its application.

Keywords

Acknowledgement

This work was supported by the Guangdong Provincial Natural Science Research Team Project: New Energy Efcient Electrical Energy Conversion, 2017B030312001.

References

  1. Lamburn, D.J., Gibbens, P.W., Dumble, S.J.: Efficient constrained model predictive control. Eur. J. Control. 20(6), 301-311 (2014) https://doi.org/10.1016/j.ejcon.2014.08.001
  2. Dragicevic, T.: Model predictive control of power converters for robust and fast operation of AC microgrids. IEEE Trans. Power Electron. 33(7), 6304-6317 (2018) https://doi.org/10.1109/tpel.2017.2744986
  3. Papafotiou, G.A., Demetriades, G.D., Agelidis, V.G.: Technology readiness assessment of model predictive control in medium- and high-voltage power electronics. IEEE Trans. Ind. Electron. 63(9), 5807-5815 (2016) https://doi.org/10.1109/TIE.2016.2521350
  4. Tavernini, D., Metzler, M., Gruber, P., et al.: Explicit nonlinear model predictive control for electric vehicle traction control. IEEE Trans. Control Syst. Technol. 27(4), 1438-1451 (2019) https://doi.org/10.1109/tcst.2018.2837097
  5. Mikail, R., Husain, I., Sozer, Y., et al.: A fixed switching frequency predictive current control method for switched reluctance machines. IEEE Trans. Ind. Appl. 50(6), 3717-3726 (2014) https://doi.org/10.1109/TIA.2014.2322144
  6. Vazquez, S., Leon, J.I., Franquelo, L.G., et al.: Model predictive control: A review of its applications in power electronics. IEEE Ind. Electron. Mag. 8(1), 16-31 (2014) https://doi.org/10.1109/MIE.2013.2290138
  7. Du, G., Liu, Z., Du, F., et al.: Performance improvement of model predictive control using control error compensation for power electronic converters based on the Lyapunov function. J. Power Electron. 17(4), 983-990 (2017) https://doi.org/10.6113/JPE.2017.17.4.983
  8. Wang, X., Zhao, J., Wang, Q., et al.: Fast FCS-MPC-based SVPWM method to reduce switching states of multilevel cascaded H-bridge STATCOMs. J. Power Electron. 19(1), 244-253 (2019) https://doi.org/10.6113/JPE.2019.19.1.244
  9. Liu, J., Cheng, S., Liu, Y., et al.: FCS-MPC for a single-phase two-stage grid connected PV inverter. IET Power Electron. 12(4), 915-922 (2019) https://doi.org/10.1049/iet-pel.2018.5676
  10. Salinas, F., Gonzalez, M.A., Escalante, M.F.: Finite control set-model predictive control of a flying capacitor multilevel chopper using Petri nets. IEEE Trans. Ind. Electron. 63(9), 5891-5899 (2016) https://doi.org/10.1109/TIE.2016.2578284
  11. Cortes, P., Member, S., Rodriguez, J., et al.: Predictive current control strategy with imposed load current spectrum. IEEE Trans. Power Electron. 23(2), 612-618 (2008) https://doi.org/10.1109/TPEL.2007.915605
  12. Tomlinson, M., Mouton, H.D.T., Kennel, R., et al.: A fixed switching frequency scheme for finite-control-set model predictive control-concept and algorithm. IEEE Trans. Ind. Electron. 63(12), 7662-7670 (2016) https://doi.org/10.1109/TIE.2016.2593997
  13. Tomlinson, M., Mouton, T., Kennel, R.: Finite-control-set model predictive control with a fixed switching frequency vs linear control for current control of a single-leg inverter. Proc. IEEE Int. Symp. PRECEDE, 109-114 (2015)
  14. Nikhil, P., Sonam, K., Monika, M., et al.: Finite control set model predictive control for two level inverter with fixed switching frequency. Proc. SICE ISCS, 74-81(2018)
  15. Abdel-Rahim, O., Funato, H., Haruna, J.: An efficient MPPT technique with fixed frequency finite-set model predictive control. Proc. IEEE ECCE, 6444-6449 (2015)
  16. Sangsefidi, Y., Ziaeinejad, S., Mehrizi-Sani, A.: Low switching frequency-based predictive control of a grid-connected voltage-sourced converter. IEEE Trans. Energy Convers. 32(2), 686-697 (2017) https://doi.org/10.1109/TEC.2016.2642123
  17. Khosravi, M., Khaburi, D.A., Heshmatian, S.: Predictive control of multi-input switched-capacitor DC-DC converter with reduced switching Frequency. Proc. 8th PEDSTC, 549-554 (2017)
  18. Rojas, C.A., Aguirre, M., Kouro, S., et al.: Leakage current mitigation in photovoltaic string inverter using predictive control with fixed average switching frequency. IEEE Trans. Ind. Electron. 64(12), 9344-9354 (2017) https://doi.org/10.1109/TIE.2017.2708003
  19. Aguirre, M., Kouro, S., Rojas, C.A., et al.: Switching frequency regulation for FCS-MPC based on a period control approach. IEEE Trans. Ind. Electron. 65(7), 5764-5773 (2018) https://doi.org/10.1109/tie.2017.2777385
  20. Aguirre, M., Kouro, S., Rojas, C.A., et al.: Enhanced switching frequency control in fcs-mpc for power converters. IEEE Trans. Ind. Electron (2020). https://doi.org/10.1109/TIE.2020.2973907
  21. Qi, C., Chen, X., Tu, P., et al.: Deadbeat control for a single-phase cascaded H-bridge rectifier with voltage balancing modulation. IET Power Electron. 11(3), 610-617 (2018) https://doi.org/10.1049/iet-pel.2016.0933
  22. Sebaaly, F., Vahedi, H., Kanaan, H.Y., et al.: Novel current controller based on MPC with fixed switching frequency operation for a grid-tied inverter. IEEE Trans. Ind. Electron. 65(8), 6198-6205 (2018) https://doi.org/10.1109/tie.2017.2784400
  23. Tarisciotti, L., Zanchetta, P., Watson, A., et al.: Modulated model predictive control for a three-phase active rectifier. IEEE Trans. Ind. Appl. 51(2), 1610-1620 (2015) https://doi.org/10.1109/TIA.2014.2339397
  24. Tarisciotti, L., Formentini, A., Gaeta, A., et al.: Model predictive control for shunt active filters with fixed switching frequency. IEEE Trans. Ind. Appl. 53(1), 296-304 (2017) https://doi.org/10.1109/TIA.2016.2606364
  25. Hu, B., Kang, L., Liu, J., et al.: Model predictive direct power control with fixed switching frequency and computational amount reduction. IEEE J. Emerg. Sel. Top. Power Electron. 7(2), 956-966 (2019) https://doi.org/10.1109/jestpe.2019.2894007
  26. Garcia, C.F., Silva, C.A., Rodriguez, J.R., et al.: Modulated Model-Predictive Control With Optimized Overmodulation. IEEE J. Emerg. Sel. Top. Power Electron. 7(1), 404-413 (2019) https://doi.org/10.1109/jestpe.2018.2828198
  27. Yang, Y., Wen, H., Li, D.: A fast and fixed switching frequency model predictive control with delay compensation for three-phase inverters. IEEE Access. 5, 17904-17913 (2017) https://doi.org/10.1109/ACCESS.2017.2751619
  28. Dang, C., Tong, X., Song, W., et al.: Cost function-based modulation scheme of model predictive control for VIENNA rectifier. IET Power Electron. 12(14), 3646-3655 (2019) https://doi.org/10.1049/iet-pel.2019.0546
  29. Xie, W., Wang, X., Wang, F., et al.: Finite-control-set model predictive torque control with a deadbeat solution for PMSM drives. IEEE Trans. Ind. Electron. 62(9), 5402-5410 (2015) https://doi.org/10.1109/TIE.2015.2410767
  30. Rivera, M., Morales, F., Baier, C., et al.: A modulated model predictive control scheme for a two-level voltage source inverter. Proc. IEEE ICIT. 2224-2229 (2015)
  31. Gurpinar, E., Castellazzi, A.: Tradeoff study of heat sink and output filter volume in a GaN HEMT based single-phase inverter. IEEE Trans. Power Electron. 33(6), 5226-5239 (2018) https://doi.org/10.1109/tpel.2017.2730038
  32. Valente, M., Iannuzzo, F., Yang, Y., et al.: Performance analysis of a single-phase GaN-based 3L-ANPC inverter for photovoltaic applications. Proc. IEEE SPEC. 1-8(2018)
  33. IEEE Standard 1547-2003: IEEE standard for interconnecting distributed resources with electric power systems (2009)
  34. Parvez, M., Elias, M.F.M., Rahim, N.A., et al.: Comparative study of discrete PI and PR controls for single-phase UPS inverter. IEEE Access. 8, 45584-45595 (2020) https://doi.org/10.1109/access.2020.2964603