DOI QR코드

DOI QR Code

Linear active disturbance rejection control with torque compensation for electric load simulator

  • Liu, Haitao (Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University) ;
  • Liu, Huarong (Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University) ;
  • Shan, Xianlei (Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University)
  • Received : 2020.06.20
  • Accepted : 2020.10.08
  • Published : 2021.01.20

Abstract

This study proposes a design of an inner control loop for the load torque control of an electric load simulator (ELS), which is specifically designed to simulate load torque (i.e., load) for mechanical equipment. By mainly drawing on linear active disturbance rejection control, a mechatronic model-based inner loop controller of ELS is designed using measured torque to reduce the complexity of the estimator. A phase-locked loop observer is introduced to suppress the negative effects of the measurement error, thereby resulting in good performance for surplus torque suppression and the dynamic behavior of the control system. Simulations and experiments on a prototype machine are performed to verify the effectiveness of the proposed control method.

Keywords

Acknowledgement

The research is partially supported by the National Key R&D Program of China (Grant No. 2017YFB1301800), National Natural Science Foundation of China (Grant No. 51805361), Natural Science Foundation of Tianjin (Grant No. 18JCQNJC04900), and China Postdoctoral Science Foundation (Grant No. 2018M640233).

References

  1. Bouscayrol, A., Guillaud, X., Delarue, P., Lemaire-Semail, B.: Energetic macroscopic representation and inversion-based control illustrated on a wind-energy-conversion system using hardware-in-the-loop simulation. IEEE Trans. Ind. Electron. 56(12), 4826-4835 (2009) https://doi.org/10.1109/TIE.2009.2013251
  2. Martin, A., Emami, M.R.: Dynamic load emulation in hardware-in-the-loop simulation of robot manipulators. IEEE Trans. Ind. Electron. 58(7), 2980-2987 (2011) https://doi.org/10.1109/TIE.2010.2072890
  3. Zhou, Y., Zhou, X.G.: Modeling and controller design for an experimental test bench for aircraft actuators. Adv. Mech. Eng. 10(12), 1-7 (2018)
  4. Zhang, L.L., Liu, L., Zhu, X.B., Xu, Z.P.: An electric load simulator for engine camless valvetrains. Appl. Sci-Basel 9(8), 1591 (2019) https://doi.org/10.3390/app9081591
  5. Sun, X.D., Hu, C.C., Lei, G., Guo, Y.G., Zhu, J.G.: State feedback control for a PM hub motor based on gray wolf optimization algorithm. IEEE Trans. Power. Electr. 35(1), 1136-1146 (2020) https://doi.org/10.1109/tpel.2019.2923726
  6. Wang, L.S., Wang, M.Y., Guo, B.: Analysis and design of a speed controller for electric load simulators. IEEE Trans. Ind. Electron. 63(12), 7413-7422 (2016) https://doi.org/10.1109/TIE.2016.2592861
  7. Jing, C.H., Xu, H.G., Jiang, J.H.: Dynamic surface disturbance rejection control for electro-hydraulic load simulator. Mech. Syst. Signal. Process. 134, 106293 (2019) https://doi.org/10.1016/j.ymssp.2019.106293
  8. Li, X., Zhou, W.L., Luo, J., Qian, J.Z., Ma, W.L., Jiang, P., Fan, Y.K.: A new mechanical resonance suppression method for large optical telescope by using nonlinear active disturbance rejection control. IEEE Access 7, 94400-94414 (2019) https://doi.org/10.1109/access.2019.2928050
  9. Zhao, S., Gao, Z.Q.: An active disturbance rejection based approach to vibration suppression in two-inertia systems. Asian. J. Control. 15(2), 350-362 (2013) https://doi.org/10.1002/asjc.552
  10. Han, S.S., Jiao, Z.X., Yao, J.Y., Shang, Y.X.: Compound velocity synchronizing control strategy for electro-hydraulic load simulator and its engineering application. J. Dyn. Syst. Meas. Control-UK 136(5), 051002 (2014) https://doi.org/10.1115/1.4026921
  11. Yalla, S.K., Kareem, A.: Dynamic load simulator: actuation strategies and applications. J. Eng. Mech-ASCE. 133(8), 855-863 (2007) https://doi.org/10.1061/(ASCE)0733-9399(2007)133:8(855)
  12. Yang, B., Liu, F.H., Zhang, M.: A loading control strategy for electric load simulator based on new mapping approach and fuzzy inference in cerebellar model articulation controller. Meas. Control-UK 52(1-2), 131-144 (2019) https://doi.org/10.1177/0020294018823028
  13. Ullah, N., Al-Ahmadi, A.A.: Non integer order modeling and control of aerodynamic load simulator system. IEEE Access 7, 160177-160190 (2019) https://doi.org/10.1109/access.2019.2950097
  14. Shamisa, A., Kiani, Z.: Robust fault-tolerant controller design for aerodynamic load simulator. Aerosp. Sci. Technol. 78, 332-341 (2018) https://doi.org/10.1016/j.ast.2018.04.035
  15. Kang, S., Nagamune, Y., Yan, H.: Almost disturbance decoupling force control for the electro-hydraulic load simulator with mechanical backlash. Mech. Syst. Signal. Process. 135, 106400 (2020) https://doi.org/10.1016/j.ymssp.2019.106400
  16. Zhao, J.S., Shen, G., Zhu, W.D., Yang, C.F., Yao, J.: Robust force control with a feed-forward inverse model controller for electro-hydraulic control loading systems of fight simulators. Mechatronics 38, 42-53 (2016) https://doi.org/10.1016/j.mechatronics.2016.06.004
  17. Guo, J.Z., Wang, D., Chen, W.Y., Fan, R.: Multi-axis loading device for reliability tests of machine tools. IEEE-ASME T. Mech. 23(4), 1930-1940 (2018) https://doi.org/10.1109/TMECH.2018.2841883
  18. Li, Z.H., Shang, Y.X., Jiao, Z.X., Wu, S., Yao, J.Y.: Surplus Torque elimination control of electro-hydraulic load simulator based on actuator velocity input feedforword compensating method. J. Dyn. Syst Trans. ASME 140(10), 101001 (2018) https://doi.org/10.1115/1.4039663
  19. Wang, C.W., Jiao, Z.X., Quan, L., Meng, H.J.: Application of adaptive robust control for electro-hydraulic motion loading system. Trans. Inst. Meas. Control. 40(3), 873-884 (2018) https://doi.org/10.1177/0142331216670486
  20. Yang, B., Bao, R., Han, H.T.: Robust hybrid control based on PD and novel CMAC with improved architecture and learning scheme for electric load simulator. IEEE Trans. Ind. Electron. 61(10), 5271-5279 (2014) https://doi.org/10.1109/TIE.2014.2301717
  21. Li, C.C., Li, Y.F., Wang, G.L.: H∞ output tracking control of electric-motor-driven aerodynamic load simulator with external active motion disturbance and nonlinearity. Aerosp. Sci. Technol. 82-83, 334-349 (2018) https://doi.org/10.1016/j.ast.2018.09.021
  22. Jing, C.H., Xu, H.G., Song, X.M., Lu, B.: Adaptive extended state observer-based fatness nonlinear output control for torque tracking of electrohydraulic loading system. Trans. Inst. Meas. Control. 40(10), 2999-3009 (2018) https://doi.org/10.1177/0142331217713835
  23. Zhu, Z.C., Tang, Y., Shen, G.: Experimental investigation of a compound force tracking control strategy for electro-hydraulic hybrid testing system with suppression of vibration disturbances. Process. Inst. Mech. Eng. C-J Mech. 231(6), 1033-1056 (2017) https://doi.org/10.1177/0954406216631782
  24. Wang, C.W., Jiao, Z.X., Wu, S., Shang, Y.X.: An experimental study of the dual-loop control of electro-hydraulic load simulator (EHLS). Chin. J. Aeronaut. 26(6), 1586-1595 (2013) https://doi.org/10.1016/j.cja.2013.10.002
  25. Wang, X., Sun, L.: Multi-loop controller design applied to the experiment of a load test bench. J. Mech. Sci. Technol. 29(9), 3953-3960 (2015) https://doi.org/10.1007/s12206-015-0840-4
  26. Wang, X.: Modeling and control of a torque load system with servo actuator's dynamics. Proc. Inst. Mech. Eng G J. Aerosp. 231(9), 1676-1685 (2017) https://doi.org/10.1177/0954410016656882
  27. Jing, C.H., Xu, H.G., Jiang, J.H.: Flatness-based adaptive nonlinear control for torque tracking of electro-hydraulic friction load simulator with uncertainties. Proc. Inst. Mech. Eng. I J. Syst. 233(8), 1009-1016 (2018)
  28. Han, J.Q.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900-906 (2009) https://doi.org/10.1109/TIE.2008.2011621
  29. Zhang, G.Q., Wang, G.L., Yuan, B.H., Liu, R., Xu, D.G.: Active disturbance rejection control strategy for signal injection-based sensorless IPMSM drives. IEEE Trans. Transp. Electr. 4(1), 330-339 (2018) https://doi.org/10.1109/tte.2017.2765206
  30. Wang, G.L., Liu, R., Zhao, N.N., Ding, D.W., Xu, D.G.: Enhanced linear ADRC strategy for HF pulse voltage signal injection based sensorless IPMSM drives. IEEE Trans. Power. Electr. 34(1), 514-525 (2019) https://doi.org/10.1109/TPEL.2018.2814056
  31. Zuo, Y.F., Zhu, X.Y., Quan, L., Zhan, C., Du, Y., Xiang, Z.X.: Active disturbance rejection controller for speed control of electrical drives using phase-locking loop observer. IEEE Trans. Ind. Electron. 66(3), 1748-1759 (2019) https://doi.org/10.1109/tie.2018.2838067
  32. Sun, X.D., Hu, C.C., Zhu, J.G., Wang, S.H., Zhou, W.Q., Yang, Z.B., Lei, G., Li, K., Zhu, B., Guo, Y.G.: MPTC for PMSMs of EVs with multi-motor driven system considering optimal energy allocation. IEEE Trans. Magn. 55(7), 8104306 (2019)
  33. Wang, G.L., Li, Z.M., Zhang, G.Q., Yu, Y., Xu, D.G.: Quadrature PLL-based high-order sliding-mode observer for IPMSM sensorless control with online MTPA control strategy. IEEE Trans. Energy. Convers. 28(1), 214-224 (2013) https://doi.org/10.1109/TEC.2012.2228484
  34. Kim, S.: Moment of inertia and friction torque coefficient identification in a servo drive system. IEEE Trans. Ind. Electron. 66(1), 60-70 (2019) https://doi.org/10.1109/tie.2018.2826456