DOI QR코드

DOI QR Code

C-LLC-LL resonant converter with wide-gain-range and low-stress for hold-up operation

  • Ma, Xiaochen (School of Electrical and Information Engineering, Tianjin University) ;
  • Wang, Ping (School of Electrical and Information Engineering, Tianjin University) ;
  • Wang, Zhishuang (School of Electrical and Information Engineering, Tianjin University) ;
  • Li, Bo (School of Electrical and Information Engineering, Tianjin University)
  • Received : 2021.03.17
  • Accepted : 2021.06.18
  • Published : 2021.09.20

Abstract

For applications with hold-up time requirements, the LCLC converter can achieve a wider voltage gain range than the LLC converter without degrading the normal operation efficiency due to its variable-magnetizing-inductor (VML) structure, which is formed by an inductor and an additional capacitor. However, the wide gain range achieved by the VML is at the expense of a high resonant voltage stress of the VML's capacitor, which affects the converter volume/cost. Hence, to solve the contradiction between wide gain range and low capacitor voltage stress when the VML technique is adopted for hold-up operation, this paper proposes a novel C-LLC-LL converter. Specifically, the VML is arranged into a novel C-dual-LL structure. By relying on the unique output voltages relation between C-dual-LL's two branches, the reduced voltage stress of the VML's capacitor and the expanded voltage gain range can be simultaneously realized. To evaluate the feasibility of the proposed solution, a comprehensive analysis is conducted, and experimental results obtained from a 500-W C-LLC-LL prototype are also provided.

Keywords

References

  1. Zhao, S., Khan, N., Nagarajan, S., Trescases, O.: Lithium-ion-capacitor-based distributed UPS architecture for reactive power mitigation and phase balancing in datacenters. IEEE Trans. Power Electron. 34(8), 7381-7396 (2019) https://doi.org/10.1109/tpel.2018.2878682
  2. Wang, P., Chen, Y., Kushima, P., Elasser, Y., Liu, M., et al.: A 99.7% efficient 300 W hard disk drive storage server with multiport ac-coupled differential power processing (MAC-DPP) architecture. Proc. IEEE Energy Convers. Congr. Expo., 5124-5131 (2019)
  3. Kim, D.-K., Moon, S., Yeon, C.-O., Moon, G.-W.: High-efficiency LLC resonant converter with high voltage gain using an auxiliary LC resonant circuit. IEEE Trans. Power Electron. 31(10), 6901-6909 (2016) https://doi.org/10.1109/TPEL.2015.2510380
  4. Baek, J., Lee, J.-B., Kim, J.-K.: Effective hold-up time extension method using fan control in server power systems. IEEE Trans. Ind. Electron. 67(7), 5820-5824 (2020) https://doi.org/10.1109/tie.2019.2934032
  5. Kathiresan, R., Das, P., Reindl, T., Panda, S.K.: A novel ZVS DC-DC full-bridge converter with hold-up time operation. IEEE Trans. Ind. Electron. 64(6), 4491-4500 (2017) https://doi.org/10.1109/TIE.2017.2674583
  6. Wei, Y., Luo, Q., Mantooth, A.: Overview of modulation strategies for LLC resonant converter. IEEE Trans. Power Electron. 35(10), 10423-10443 (2020) https://doi.org/10.1109/tpel.2020.2975392
  7. Abdel-Rahim, O., Alamir, N., Orabi, M., Ismeil, M.: Fixed-frequency phase-shift modulated PV-MPPT for LLC resonant converters. J. Power Electron. 20(1), 279-291 (2020) https://doi.org/10.1007/s43236-019-00001-w
  8. Fei, C., Gadelrab, R., Li, Q., Lee, F.C.: High-frequency three-phase interleaved LLC resonant converter with GaN devices and integrated planar magnetics. IEEE J. Emerg. Sel. Topics Power Electron. 7(2), 653-663 (2019) https://doi.org/10.1109/jestpe.2019.2891317
  9. Wen, H., Jiao, D., Lai, J.-S., Strydom, J., Zhang, L.: An accurate voltage gain model considering diode effect for LLC resonant converter in wide gain range applications. Proc. IEEE Energy Convers. Congr. Expo., 5436-5441 (2020)
  10. Pham, V.-L., Duong, V.-T., Choi, W.: High-efficiency active cell-to-cell balancing circuit for Lithium-Ion battery modules using LLC resonant converter. J. Power Electron. 20(4), 1037-1046 (2020) https://doi.org/10.1007/s43236-020-00088-6
  11. Jovanovic, M.M., Irving, B.T.: On-the-fly topology-morphing control-efficiency optimization method for LLC resonant converters operating in wide input- and/or output-voltage range. IEEE Trans. Power Electron. 31(3), 2596-2608 (2016) https://doi.org/10.1109/TPEL.2015.2440099
  12. Glitz, E.S., Hsu, J.-D., Ordonez, M.: Power loss estimation in LLC synchronous rectification using rectifier current equations. IEEE Trans. Ind. Electron. 67(5), 3696-3704 (2020) https://doi.org/10.1109/tie.2019.2917372
  13. Lee, I.-O., Moon, G.-W.: The k-Q analysis for an LLC series resonant converter. IEEE Trans. Power Electron. 29(1), 13-16 (2014) https://doi.org/10.1109/TPEL.2013.2255106
  14. Kim, M.-Y., Kim, B.-C., Park, K.-B., Moon, G.-W.: LLC series resonant converter with auxiliary hold-up time compensation circuit. Proc. 8th International Conf. on Power Electron. ECCE Asia, 628-633 (2011)
  15. Jeong, Y., Lee, M.-S., Park, J.-D., Kim, J.-K., Rorrer, R.A.L.: Hold-up time compensation circuit of half-bridge LLC resonant converter for high light-load efficiency. IEEE Trans. Power Electron. 35(12), 13126-13135 (2020) https://doi.org/10.1109/tpel.2020.2992751
  16. Tang, X., Xing, Y., Wu, H., Sun, K., Ma, X.: An improved LLC resonant converter with phase-shift controlled dynamic series-parallel reconfiguration-windings for hold-up applications. Proc. IEEE Appl. Power Electron. Conf. Expo., 791-796 (2019)
  17. Kim, B.-C., Park, K.-B., Choi, S.-W., Moon, G.-W.: LLC series resonant converter with auxiliary circuit for hold-up time. Proc. IEEE Int. Telecommun. Energy Conf., 1-4 (2019)
  18. Tang, X., Wu, H., Zhao, J., Xing, Y.: Family of half-bridge LLC resonant converters with auxiliary switches for hold-up operation. IET Power Electron. 12(6), 1376-1384 (2019) https://doi.org/10.1049/iet-pel.2018.5654
  19. Yu, Z., Wu, H., Hua, W., Zhu, J., Xing, Y.: A dual-transformer-based LLC resonant converter with phase-shift control for hold-up time compensation application. Proc. IEEE Energy Convers. Congr. Expo., 5961-5966 (2018)
  20. Chen, Y., Wang, H., Hu, Z., Liu, Y.-F., Afsharian, J., et al.: LCLC resonant converter for hold up mode operation. Proc. IEEE Energy Convers. Congr. Expo., 556-562 (2015)
  21. Chen, Y., Wang, H., Liu, Y.-F., Afsharian, J., Yang, Z.: Efficiency-wise optimal design methodology of LCLC converter for wide input voltage range applications. Proc. IEEE Energy Convers. Congr. Expo., 1-8 (2016)
  22. Chen, Y., Wang, H., Hu, Z., Liu, Y.-F., Liu, X., et al.: LCLC converter with optimal capacitor utilization for hold-up mode operation. IEEE Trans. Power Electron. 34(3), 2385-2396 (2019) https://doi.org/10.1109/tpel.2018.2842022
  23. Vu, H.-N., Choi, W.: A novel dual full-bridge LLC resonant converter for CC and CV charges of batteries for electric vehicles. IEEE Trans. Ind. Electron. 65(3), 2212-2225 (2018) https://doi.org/10.1109/TIE.2017.2739705
  24. Elsayad, N., Moradisizkoohi, H., Mohammed, O.A.: A single-switch transformerless DC-DC converter with universal input voltage for fuel cell vehicles: Analysis and design. IEEE Trans. Veh. Technol. 68(5), 4537-4549 (2019) https://doi.org/10.1109/tvt.2019.2905583