DOI QR코드

DOI QR Code

Simple current control without grid voltage sensor for traction solid-state transformer

  • Received : 2020.11.22
  • Accepted : 2020.12.29
  • Published : 2021.04.20

Abstract

This paper proposes a simple current control method without a grid voltage sensor for a rectifier of traction solid-state transformer. The proposed control scheme estimates the phase angle of grid voltage from the fundamental frequency current of the grid. The extracted phase signal is normalized to generate a sinusoidal current reference by adopting a scaling factor to achieve a unity gain. Since the proposed control method operates without the grid voltage sensor for power factor correction (PFC), it offers a cost-effective solution with a simple implementation structure. However, this method cannot guarantee its control performance under weak grid conditions, where the frequency of grid voltage often varies. Thus, the control parameters of the proposed method are discussed and analyzed to minimize performance degradation. To verify the feasibility of the proposed control method, simulations and experiments are carried out on a 2 kW single-phase PFC converter. The proposed method provides as much control performance as the conventional method, which uses the grid voltage sensor.

Keywords

Acknowledgement

This work was supported by a Grant (20RTRP-B146050-03) from the Railroad Technology Development Program funded by Ministry of Land, Infrastructure and Transport (MOLIT) of the Korean Government. This research was supported by the Human Resource Program (Grant No. 20194010201790) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea.

References

  1. Sayed, M.M.G., Adel, T.L., Ewald, F.F., Kamal, A.-H.: Power quality issues in railway electrification. IEEE Trans Ind Electron 62(5), 3081-3090 (2015) https://doi.org/10.1109/TIE.2014.2386794
  2. Sijia, H., Bin, X., Yong, L., Xiang, G., Zhiwen, Z., Longfu, L., Olav, K., Yijia, C.: A power factororiented railway power flow controller for power quality improvement in electrical railway power system. IEEE Trans. Ind. Electron. 64(2), 1167-1177 (2017) https://doi.org/10.1109/TIE.2016.2615265
  3. Fujun, M., Qianming, X., Zhixing, H., Chunming, Tu., Zhikang, S., An, L., Yong, L.: A railway traction power conditioner using modular multilevel converter and its control strategy for high-speed railway system. IEEE Trans. Transport. Electrific. 2(1), 96-109 (2016) https://doi.org/10.1109/TTE.2016.2515164
  4. Baichao, C., Chenmeng, Z., Cuihua, T., Jin, W., Jiaxin, Y.: A hybrid electrical magnetic power quality compensation system with minimum active compensation capacity for V/V cophase railway power supply system. IEEE Trans. Power Electron. 31(6), 4159-4170 (2016) https://doi.org/10.1109/TPEL.2015.2477459
  5. Adel, T.L., Andrea, M., Mohammad, A.A.: Power quality conditioning in railway electrification: a comparative study. IEEE Trans. Veh. Technol. 66(8), 6653-6662 (2017) https://doi.org/10.1109/TVT.2017.2661820
  6. Jiepin, Z., Jianqiang, L., Shigeng, Z., Jingxi, Y., Nan, Z., Trillion, Q.Z.: A power electronic traction transformer configuration with low-voltage IGBTs for onboard traction application. IEEE Trans. Power Electron. 34(9), 8453-8467 (2019) https://doi.org/10.1109/tpel.2018.2889107
  7. Juliano, D.O.P., Dalton, D.A.H., Demercil, D.S.O.: An AC-DC isolated MMC-based structure suitable for MV SST traction applications. IEEE Access. 7, 106395-106406 (2019) https://doi.org/10.1109/access.2019.2930810
  8. Alireza, L.E., Ali, M., Mohammadsadegh, S.: In-depth study of the application of solid-state transformer in design of high-power electric vehicle charging stations. IET Electr. Syst. Transp. 10(3), 310-319 (2020) https://doi.org/10.1049/iet-est.2019.0106
  9. Yun-Sung, K., Won-Yong, S., Byoung-Kuk, L.: Carrier-based digital PWM and multirate technique of a cascaded H-bridge converter for power electronic traction transformers. IEEE J Emerg Sel Topics Power Electron 7(2), 1207-1223 (2019) https://doi.org/10.1109/jestpe.2019.2891735
  10. Jiepin, Z., Jianqiang, L., Jingxi, Y., Nan, Z., Yang, W., Trillion, Q.Z.: A modified DC power electronic transformer based on series connection of full-bridge converters. IEEE Trans. Power Electron. 34(3), 2119-2133 (2019) https://doi.org/10.1109/tpel.2018.2842728
  11. Metin, K., Mithat, C.K., Leon, M.T.: Vehicle-to-grid reactive power operation using plug-in electric vehicle bidirectional offboard charger. IEEE Trans. Ind. Electron. 61(12), 6778-6784 (2014) https://doi.org/10.1109/TIE.2014.2314065
  12. Hiu, T., Yulin, Z., Hua, B.: SiC + Si three-phase 48 V electric vehicle battery charger employing current-SVPWM controlled SWISS AC/DC and variable-DC-bus DC/DC converters. IET Electr. Syst. Transp. 8(4), 231-239 (2018) https://doi.org/10.1049/iet-est.2017.0083
  13. Ahlem, B.Y., Sejir, K.E.K., Ilhem, S.-B.: State observer-based sensor fault detection and isolation, and fault tolerant control of a single-phase PWM rectifier for electric railway traction. IEEE Trans. Power Electron. 28(12), 5842-5853 (2013) https://doi.org/10.1109/TPEL.2013.2257862
  14. Young-Joo, L., Alireza, K., Ali, E.: Advanced integrated bidirectional AC/DC and DC/DC converter for plug-in hybrid electric vehicles. IEEE Trans. Veh. Technol. 58(8), 3970-3980 (2009) https://doi.org/10.1109/TVT.2009.2028070
  15. Barry, M., Bhaskar, R., Dragan, M.: A digital PFC controller without input voltage sensing. In: Proc. Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition, 198-204 (2007)
  16. Min, C., Anu, M., Jian, S.: Nonlinear current control of single-phase PFC converters. IEEE Trans. Power Electron. 22(6), 2187-2194 (2007) https://doi.org/10.1109/TPEL.2007.909410
  17. Sung, M. P., Yong, D. L., Sung-Yeul, P.: Voltage sensorless feedforward control of a dual boost PFC converter for battery charger applications. In: Proc. IEEE Energy Conversion Congress and Exposition, 1376-1380 (2011)
  18. Junichi, Y., Osamu, M., Toshiya, Y.: A voltage-sensorless PFC voltage doubler. In: Proc. 15th International Power Electronics and Motion Control Conference (EPE/PEMC), 1-6 (2012)
  19. Zhiyong, D., Jianwei, Y., Dingjia, R., Juxiang, Z., Zhen, Z.: A global convergence estimator of grid voltage parameters for more electric aircraft. IEEE Trans. Ind. Electron. 67(9), 7540-7549 (2020) https://doi.org/10.1109/tie.2019.2944087
  20. Cong-Long, N., Hong-Hee, L., Tae-Won, C.: A simple grid-voltage-sensorless control scheme for PFC boost converters. J. Power Electron. 14(4), 712-721 (2014) https://doi.org/10.6113/JPE.2014.14.4.712
  21. Ngoc, B.L., Kyeong-Hwa, K., Pedro, R.: Voltage sensorless control scheme based on extended-state estimator for a grid-connected inverter. IEEE Trans. Power Electron. 35(6), 5873-5882 (2020) https://doi.org/10.1109/tpel.2019.2952898
  22. Wenlong, Q., Sinan, L., Siew-Chong, T., Shu, Y.H., Zhen, Z.: Design considerations for voltage sensorless control of a PFC single-phase rectifier without electrolytic capacitors. IEEE Trans. Ind. Electron. 67(3), 1878-1889 (2020) https://doi.org/10.1109/tie.2019.2903744
  23. Huibin, Z., Beat, A., L., H., E., S., Jih-Sheng, L.: Grid synchronization control without AC voltage sensors. In: Proc. Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition, 172-178 (2003)
  24. Adel, R., Ali, B., Hamid, S., Djaffar, O.A.: Grid voltages estimation for three-phase PWM rectifiers control without AC voltage sensors. IEEE Trans. Power Electron. 33(1), 859-875 (2018) https://doi.org/10.1109/TPEL.2017.2669146
  25. Ayan, M., Weisheng, D., Chuan, S., Alireza, K.: Input voltage sensorless duty compensation control for a three-phase boost PFC converter. IEEE Trans. Ind. Appl. 53(2), 1527-1537 (2017) https://doi.org/10.1109/TIA.2016.2626247
  26. Gwi-Geun, P., Kee-Yong, K., Tae-Woong, K.: PFC dual boost converter based on input voltage estimation for PFC dual boost converter based on input voltage estimation for DC inverter air conditioner. J. Power Electron. 10(3), 293-299 (2010) https://doi.org/10.6113/JPE.2010.10.3.293
  27. Majid, P., Pritam, D., Gerry, M., Praveen, J.: Sensorless control of a boost PFC AC/DC converter with a very fast transient response. In: Proc. Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition, 356-360 (2013)