Acknowledgement
This work was supported by a Grant (20RTRP-B146050-03) from the Railroad Technology Development Program funded by Ministry of Land, Infrastructure and Transport (MOLIT) of the Korean Government. This research was supported by the Human Resource Program (Grant No. 20194010201790) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea.
References
- Sayed, M.M.G., Adel, T.L., Ewald, F.F., Kamal, A.-H.: Power quality issues in railway electrification. IEEE Trans Ind Electron 62(5), 3081-3090 (2015) https://doi.org/10.1109/TIE.2014.2386794
- Sijia, H., Bin, X., Yong, L., Xiang, G., Zhiwen, Z., Longfu, L., Olav, K., Yijia, C.: A power factororiented railway power flow controller for power quality improvement in electrical railway power system. IEEE Trans. Ind. Electron. 64(2), 1167-1177 (2017) https://doi.org/10.1109/TIE.2016.2615265
- Fujun, M., Qianming, X., Zhixing, H., Chunming, Tu., Zhikang, S., An, L., Yong, L.: A railway traction power conditioner using modular multilevel converter and its control strategy for high-speed railway system. IEEE Trans. Transport. Electrific. 2(1), 96-109 (2016) https://doi.org/10.1109/TTE.2016.2515164
- Baichao, C., Chenmeng, Z., Cuihua, T., Jin, W., Jiaxin, Y.: A hybrid electrical magnetic power quality compensation system with minimum active compensation capacity for V/V cophase railway power supply system. IEEE Trans. Power Electron. 31(6), 4159-4170 (2016) https://doi.org/10.1109/TPEL.2015.2477459
- Adel, T.L., Andrea, M., Mohammad, A.A.: Power quality conditioning in railway electrification: a comparative study. IEEE Trans. Veh. Technol. 66(8), 6653-6662 (2017) https://doi.org/10.1109/TVT.2017.2661820
- Jiepin, Z., Jianqiang, L., Shigeng, Z., Jingxi, Y., Nan, Z., Trillion, Q.Z.: A power electronic traction transformer configuration with low-voltage IGBTs for onboard traction application. IEEE Trans. Power Electron. 34(9), 8453-8467 (2019) https://doi.org/10.1109/tpel.2018.2889107
- Juliano, D.O.P., Dalton, D.A.H., Demercil, D.S.O.: An AC-DC isolated MMC-based structure suitable for MV SST traction applications. IEEE Access. 7, 106395-106406 (2019) https://doi.org/10.1109/access.2019.2930810
- Alireza, L.E., Ali, M., Mohammadsadegh, S.: In-depth study of the application of solid-state transformer in design of high-power electric vehicle charging stations. IET Electr. Syst. Transp. 10(3), 310-319 (2020) https://doi.org/10.1049/iet-est.2019.0106
- Yun-Sung, K., Won-Yong, S., Byoung-Kuk, L.: Carrier-based digital PWM and multirate technique of a cascaded H-bridge converter for power electronic traction transformers. IEEE J Emerg Sel Topics Power Electron 7(2), 1207-1223 (2019) https://doi.org/10.1109/jestpe.2019.2891735
- Jiepin, Z., Jianqiang, L., Jingxi, Y., Nan, Z., Yang, W., Trillion, Q.Z.: A modified DC power electronic transformer based on series connection of full-bridge converters. IEEE Trans. Power Electron. 34(3), 2119-2133 (2019) https://doi.org/10.1109/tpel.2018.2842728
- Metin, K., Mithat, C.K., Leon, M.T.: Vehicle-to-grid reactive power operation using plug-in electric vehicle bidirectional offboard charger. IEEE Trans. Ind. Electron. 61(12), 6778-6784 (2014) https://doi.org/10.1109/TIE.2014.2314065
- Hiu, T., Yulin, Z., Hua, B.: SiC + Si three-phase 48 V electric vehicle battery charger employing current-SVPWM controlled SWISS AC/DC and variable-DC-bus DC/DC converters. IET Electr. Syst. Transp. 8(4), 231-239 (2018) https://doi.org/10.1049/iet-est.2017.0083
- Ahlem, B.Y., Sejir, K.E.K., Ilhem, S.-B.: State observer-based sensor fault detection and isolation, and fault tolerant control of a single-phase PWM rectifier for electric railway traction. IEEE Trans. Power Electron. 28(12), 5842-5853 (2013) https://doi.org/10.1109/TPEL.2013.2257862
- Young-Joo, L., Alireza, K., Ali, E.: Advanced integrated bidirectional AC/DC and DC/DC converter for plug-in hybrid electric vehicles. IEEE Trans. Veh. Technol. 58(8), 3970-3980 (2009) https://doi.org/10.1109/TVT.2009.2028070
- Barry, M., Bhaskar, R., Dragan, M.: A digital PFC controller without input voltage sensing. In: Proc. Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition, 198-204 (2007)
- Min, C., Anu, M., Jian, S.: Nonlinear current control of single-phase PFC converters. IEEE Trans. Power Electron. 22(6), 2187-2194 (2007) https://doi.org/10.1109/TPEL.2007.909410
- Sung, M. P., Yong, D. L., Sung-Yeul, P.: Voltage sensorless feedforward control of a dual boost PFC converter for battery charger applications. In: Proc. IEEE Energy Conversion Congress and Exposition, 1376-1380 (2011)
- Junichi, Y., Osamu, M., Toshiya, Y.: A voltage-sensorless PFC voltage doubler. In: Proc. 15th International Power Electronics and Motion Control Conference (EPE/PEMC), 1-6 (2012)
- Zhiyong, D., Jianwei, Y., Dingjia, R., Juxiang, Z., Zhen, Z.: A global convergence estimator of grid voltage parameters for more electric aircraft. IEEE Trans. Ind. Electron. 67(9), 7540-7549 (2020) https://doi.org/10.1109/tie.2019.2944087
- Cong-Long, N., Hong-Hee, L., Tae-Won, C.: A simple grid-voltage-sensorless control scheme for PFC boost converters. J. Power Electron. 14(4), 712-721 (2014) https://doi.org/10.6113/JPE.2014.14.4.712
- Ngoc, B.L., Kyeong-Hwa, K., Pedro, R.: Voltage sensorless control scheme based on extended-state estimator for a grid-connected inverter. IEEE Trans. Power Electron. 35(6), 5873-5882 (2020) https://doi.org/10.1109/tpel.2019.2952898
- Wenlong, Q., Sinan, L., Siew-Chong, T., Shu, Y.H., Zhen, Z.: Design considerations for voltage sensorless control of a PFC single-phase rectifier without electrolytic capacitors. IEEE Trans. Ind. Electron. 67(3), 1878-1889 (2020) https://doi.org/10.1109/tie.2019.2903744
- Huibin, Z., Beat, A., L., H., E., S., Jih-Sheng, L.: Grid synchronization control without AC voltage sensors. In: Proc. Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition, 172-178 (2003)
- Adel, R., Ali, B., Hamid, S., Djaffar, O.A.: Grid voltages estimation for three-phase PWM rectifiers control without AC voltage sensors. IEEE Trans. Power Electron. 33(1), 859-875 (2018) https://doi.org/10.1109/TPEL.2017.2669146
- Ayan, M., Weisheng, D., Chuan, S., Alireza, K.: Input voltage sensorless duty compensation control for a three-phase boost PFC converter. IEEE Trans. Ind. Appl. 53(2), 1527-1537 (2017) https://doi.org/10.1109/TIA.2016.2626247
- Gwi-Geun, P., Kee-Yong, K., Tae-Woong, K.: PFC dual boost converter based on input voltage estimation for PFC dual boost converter based on input voltage estimation for DC inverter air conditioner. J. Power Electron. 10(3), 293-299 (2010) https://doi.org/10.6113/JPE.2010.10.3.293
- Majid, P., Pritam, D., Gerry, M., Praveen, J.: Sensorless control of a boost PFC AC/DC converter with a very fast transient response. In: Proc. Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition, 356-360 (2013)