DOI QR코드

DOI QR Code

Maximum efficiency tracking method based on parameter detection for ICPT systems

  • Sheng, Xuerui (Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences) ;
  • Shi, Liming (Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences)
  • Received : 2020.12.30
  • Accepted : 2021.05.21
  • Published : 2021.09.20

Abstract

Efficiency is very important in inductively coupled power transfer (ICPT) systems. To maintain a high efficiency, a maximum efficiency tracking (MET) method based on parameter detection is proposed in the paper. The basic idea is to convert the load value to the active short-circuit (ASC) time interval for the semi-controlled rectifier on the pick-up side. The ASC time interval and the transmitting coil current are detected to calculate the load and mutual inductance values on the transmitting side. According to the detected parameters, the output voltage of the high-frequency inverter that makes the system run at its maximum efficiency can be calculated and controlled. In addition, the load voltage is controlled by the high-frequency rectifier on the pick-up side. Simulation and experimental results show that this method can quickly achieve MET without wireless communication. Furthermore, the difference between the experimental maximum efficiency and the theoretical maximum efficiency is no more than 2%.

Keywords

References

  1. Kim, C.-G., et al.: Design of a contactless battery charger for cellular phone. IEEE Trans. Ind. Electron. 48(6), 1238-1247 (2001) https://doi.org/10.1109/41.969404
  2. Yin, J., Lin, D., Lee, C.K., et al.: Front-end monitoring of multiple loads in wireless power transfer systems without wireless communication systems. IEEE Trans. Power Electron. 31(3), 2510-2517 (2016) https://doi.org/10.1109/TPEL.2015.2426313
  3. del Toro Garcia, X., Vazquez, J., Roncero-Sanchez, P.: Design, implementation issues and performance of an inductive power transfer system for electric vehicle chargers with series-series compensation. IET Power Electron. 8(10), 1920-1930 (2015) https://doi.org/10.1049/iet-pel.2014.0877
  4. Qiu, C., Chau, K.T., Liu, C., Chan, C.C.: Overview of wireless power transfer for electric vehicle charging. In: 2013 World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, pp. 1-9 (2013)
  5. Jiang, L., et al.: Segment control scheme of inductive power transfer system for rail transit. IEEE Trans. Ind. Appl. 54(4), 3271-3280 (2018) https://doi.org/10.1109/tia.2018.2822244
  6. Wu, P., et al.: An inductively coupled power transfer system based power control for motor drives of rail transit vehicle. In: 17th International Conference on Electrical Machines and Systems (ICEMS), pp. 202-205 (2014)
  7. Ahn, D., Hong, S.: Wireless power transfer resonance coupling amplification by load-modulation switching controller. IEEE Trans. Industr. Electron. 62(2), 898-909 (2015) https://doi.org/10.1109/TIE.2014.2336627
  8. Li, Q., Liang, Y.C.: An inductive power transfer system with a high-Q resonant tank for mobile device charging. IEEE Trans. Power Electron. 30(11), 6203-6212 (2015) https://doi.org/10.1109/TPEL.2015.2424678
  9. Sampath, J.P.K., Alphones, A., Vilathgamuwa, D.M.: Figure of merit for the optimization of wireless power transfer system against misalignment tolerance. IEEE Trans. Power Electron. 32(6), 4359-4369 (2017) https://doi.org/10.1109/TPEL.2016.2601939
  10. Li, H., Fang, J., Chen, S., et al.: Pulse density modulation for maximum efficiency point tracking of wireless power transfer systems. IEEE Trans. Power Electron. 33(6), 5492-5501 (2018) https://doi.org/10.1109/tpel.2017.2737883
  11. Li, H., Li, J., Wang, K., et al.: A maximum efficiency point tracking control scheme for wireless power transfer systems using magnetic resonant coupling. IEEE Trans. Power Electron. 30(7), 3998-4008 (2015) https://doi.org/10.1109/TPEL.2014.2349534
  12. Huang, Z., Wong, S., Tse, C.K.: Control design for optimizing efficiency in inductive power transfer systems. IEEE Trans. Power Electron. 33(5), 4523-4534 (2018) https://doi.org/10.1109/tpel.2017.2724039
  13. Mai, R., Liu, Y., Li, Y., et al.: An active-rectifier-based maximum efficiency tracking method using an additional measurement coil for wireless power transfer. IEEE Trans. Power Electron. 33(1), 716-728 (2018) https://doi.org/10.1109/TPEL.2017.2665040
  14. Matsumoto, H., Neba, Y., Asahara, H.: Switched compensator for contactless power transfer systems. IEEE Trans. Power Electron. 30(11), 6120-6129 (2015) https://doi.org/10.1109/TPEL.2015.2389876
  15. Dai, X., Li, X., Li, Y., Hu, A.P.: Maximum efficiency tracking for wireless power transfer systems with dynamic coupling coefficient estimation. IEEE Trans. Power Electron. 33(6), 5005-5015 (2018) https://doi.org/10.1109/tpel.2017.2729083
  16. Liu, X., Wang, T., Yang, X., Tang, H.: Analysis of efficiency improvement in wireless power transfer system. IET Power Electron. 11(2), 302-309 (2018) https://doi.org/10.1049/iet-pel.2017.0029
  17. Zhong, W.X., Hui, S.Y.R.: Maximum energy efficiency tracking for wireless power transfer systems. IEEE Trans. Power Electron. 30(7), 4025-4034 (2015) https://doi.org/10.1109/TPEL.2014.2351496
  18. Zhang, W., Wong, S., Tse, C.K., Chen, Q.: Analysis and comparison of secondary series- and parallel-compensated inductive power transfer systems operating for optimal efficiency and load-independent voltage-transfer ratio. IEEE Trans. Power Electron. 29(6), 2979-2990 (2014) https://doi.org/10.1109/TPEL.2013.2273364
  19. Sheng, X., Shi, L., Fan, M.: An improved pulse density modulation of high frequency inverter in ICPT system. IEEE Trans. on Ind. Electron (Early Access)
  20. Zhang, F., Shi, L., Yin, Z., et al.: A current balance control strategy applied in inductively coupled power transfer system with multiple parallel pickup modules. IEEE Trans. Veh. Technol. 68(3), 2207-2217 (2019) https://doi.org/10.1109/tvt.2019.2894828
  21. Ahn, D., Kim, S., Moon, J., Cho, I.: Wireless power transfer with automatic feedback control of load resistance transformation. IEEE Trans. Power Electron. 31(11), 7876-7886 (2016) https://doi.org/10.1109/TPEL.2015.2513060