Acknowledgement
This research was supported by Korea Electric Power Corporation, Korea Institute of Energy Technology Evaluation and Planning, and the Ministry of Trade, Industry & Energy (Grant No. R19XO01-20 and Grant No. 20194030202370)
References
- Lee, K.-B.: Advanced Power Electronics, Munundang, Seoul (2019)
- Bak, Y., Lee, K.-B.: Constant speed control of a permanent-magnet synchronous motor using a reverse matrix converter under variable generator input conditions. IEEE Trans. Emerg. Sel. Topics Power Electron. 6(1), 315-326 (2018) https://doi.org/10.1109/JESTPE.2017.2715046
- Ve, L., Laksar, J., Pechanke, R.: Overview of different concepts of traction drives with regard to high-speed PMSM. In Proc. Electric Power Engineering, 1-5 (2017)
- Matsuoka, K.: Development trend of the permanent magnet synchronous motor for railway traction. IEEJ Trans. Elect. Electron. 2(2), 154-161 (2007) https://doi.org/10.1002/tee.20121
- Norambuena, M., Rodriguez, J., Zhang, Z., Wang, F., Garcia, C., Kennel, R.: A very simple strategy for high-quality performance of AC machines using model predictive control. IEEE Trans. Power Electron. 34(1), 794-800 (2019) https://doi.org/10.1109/TPEL.2018.2812833
- Xu, Y., Morito, C., Lorenz, R.D.: Extending high-speed operating range of induction machine drives using deadbeat-direct torque and flux control with precise flux weakening. IEEE Trans. Ind. Appl. 55(4), 3770-3780 (2019) https://doi.org/10.1109/tia.2019.2908342
- Abouzeid, A.F., Guerrero, J.M., Endemano, A., Muniategui, I., Ortega, D., Larrazabal, I., Briz, F.: Control strategies for induction motors in railway traction applications. Energies 13(3), 1-22 (2020)
- Kwon, Y.-C., Kim, S., Sul, S.-K.: Voltage feedback current control scheme for improved transient performance of permanent magnet synchronous machine drives. IEEE Trans. Ind. Electron. 59(5), 3373-3382 (2012) https://doi.org/10.1109/TIE.2011.2173097
- Yepes, A.G., Doval-Gandoy, J.: Effective current limitation for multifrequency current control with distortion-free voltage saturation and antiwindup. IEEE Trans. Power Electron. 35(12), 13697-13717 (2020) https://doi.org/10.1109/tpel.2020.2995530
- Bak, Y., Jang, Y., Lee, K.-B.: Torque predictive control for permanent magnet synchronous motor drives using indirect matrix converter. J. Power Electron. 19(6), 1535-1543 (2019)
- Buja, G.S., Kazmierkowski, M.P.: Direct torque control of PWM inverter-fed AC motors - a survey. IEEE Trans. Ind. Electron. 51(4), 744-757 (2004) https://doi.org/10.1109/TIE.2004.831717
- Zhang, Y., Zhu, J., Xu, W., Guo, Y.: A simple method to reduce torque ripple in direct torque-controlled permanent-magnet synchronous motor by using vectors with variable amplitude and angle. IEEE Trans. Ind. Electron. 58(7), 2848-2859 (2011) https://doi.org/10.1109/TIE.2010.2076413
- Wu, G., Huang, S., Wu, Q., Rong, F., Zhang, C., Liao, W.: Robust predictive torque control of N*3-phase PMSM for high-power traction application. IEEE Trans. Power Electron. 35(10), 10799-10809 (2020) https://doi.org/10.1109/tpel.2020.2981914
- Qiu, X., Huang, W., Bu, F.: Torque-angle-based direct torque control for interior permanent-magnet synchronous motor drives in electric vehicles. J. Power Electron. 13(6), 964-974 (2013) https://doi.org/10.6113/JPE.2013.13.6.964
- Zhao, S., Huang, X., Fang, Y., Zhang, H.: DC-Link-Fluctuation-Resistant predictive torque control for railway traction permanent magnet synchronous motor in the six-step operation. IEEE Trans. Power Electron. 35(10), 10982-10993 (2020) https://doi.org/10.1109/tpel.2020.2975497
- Depenbrock, M.: Direct self-control (DSC) of inverter-fed induction machine. IEEE Trans. Power Electron. 3(4), 420-429 (1988) https://doi.org/10.1109/63.17963
- Steimel, A.: Electric traction - motive power and energy supply: basics and practical experience, Oldenbourg Industrievelag, Munich (2007)
- Gao, J., Hu, Y.: Direct self-control for BLDC motor drives based on three-dimensional coordinate system. IEEE Trans. Ind. Electron. 57(8), 2836-2844 (2010) https://doi.org/10.1109/TIE.2009.2036027
- Shafighy, M., Khoo, S.Y., Kouzani, A.Z.: Modified DSC propulsion systems for efficient direct recovery of regeneration in 25-kV AC traction power supply. IEEE Trans. Transp. Electrif. 3(3), 632-645 (2017) https://doi.org/10.1109/TTE.2017.2675627
- Kwon, Y.-C., Kim, S., Sul, S.-K.: Six-step operation of PMSM with instantaneous current control. IEEE Trans. Ind. Appl. 50(4), 2614-2625 (2014) https://doi.org/10.1109/tia.2013.2296652
- Kim, S., Seok, J.-K.: Maximum voltage utilization of IPMSMs using modulating voltage scalability for automotive applications. IEEE Trans. Power Electron. 28(12), 5639-5646 (2013) https://doi.org/10.1109/TPEL.2013.2253802
- Liu, J., Zhang, W., Xiao, F., Lian, C., Gao, S.: Six-step mode control of IPMSM for railway vehicle traction eliminating the DC offset in input current. IEEE Trans. Power Electron. 34(9), 8981-8993 (2019) https://doi.org/10.1109/tpel.2018.2888877
- Yang, H.-Y.O., Lorenz, R.D.: Torque ripple minimization in six-step PMSM drives via variable and fast DC bus dynamics. IEEE Trans. Ind. Appl. 55(4), 3791-3802 (2019) https://doi.org/10.1109/tia.2019.2910450
- Inoue, Y., Maeda, Y., Morimoto, S., Sanada, M.: Square-wave operation of direct torque controlled PMSM drive system. In Proc. IEEE Energy Conversion Congress and Exposition, 1801-1807 (2013)
- Calleja, C., Lopez-de-Heredia, A., Gaztanaga, H., Aldasoro, L., Nieva, T.: Validation of a modified direct-self-control strategy for PMSM in railway-traction applications. IEEE Trans. Ind. Electron. 63(8), 5143-5155 (2016) https://doi.org/10.1109/TIE.2016.2572661
- Ouyang, H., Zhang, K., Zhang, P., Kang, Y., Xiong, J.: Repetitive compensation of fluctuating DC link voltage for railway traction drives. IEEE Trans. Power Electron. 26(8), 2160-2171 (2011) https://doi.org/10.1109/TPEL.2011.2105283