DOI QR코드

DOI QR Code

Six-step operation strategy for direct self-control method of interior permanent magnet synchronous motors based on torque angle

  • Han, Byeol (Department of Electrical and Computer Engineering, Ajou University) ;
  • Lee, June-Seok (Department of Electronics and Electrical Engineering, Dankook University) ;
  • Bak, Yeongsu (Department of Electrical Energy Engineering, Keimyung University) ;
  • Lee, Kyo-Beum (Department of Electrical and Computer Engineering, Ajou University)
  • Received : 2021.03.31
  • Accepted : 2021.06.18
  • Published : 2021.09.20

Abstract

This paper proposes a six-step operation strategy for direct self-control (DSC) method of interior permanent magnet synchronous motor (IPMSM) based on the torque angle. Conventional DSC methods for induction motors (IMs) have been studied for railway applications since these methods are suitable for controlling high-power traction drives and for extending voltage utilization through a six-step inverter operation. However, IPMSMs controlled via conventional DSC methods for IMs cannot be properly controlled through a six-step operation since the torque angle is not considered. In addition, synchronous frame rotation causes a phase error at high speeds owing to the time delay of digital controllers. This paper presents a torque angle compensation that improves the dynamic performance. The effectiveness of the proposed DSC method was verified through experimental results.

Keywords

Acknowledgement

This research was supported by Korea Electric Power Corporation, Korea Institute of Energy Technology Evaluation and Planning, and the Ministry of Trade, Industry & Energy (Grant No. R19XO01-20 and Grant No. 20194030202370)

References

  1. Lee, K.-B.: Advanced Power Electronics, Munundang, Seoul (2019)
  2. Bak, Y., Lee, K.-B.: Constant speed control of a permanent-magnet synchronous motor using a reverse matrix converter under variable generator input conditions. IEEE Trans. Emerg. Sel. Topics Power Electron. 6(1), 315-326 (2018) https://doi.org/10.1109/JESTPE.2017.2715046
  3. Ve, L., Laksar, J., Pechanke, R.: Overview of different concepts of traction drives with regard to high-speed PMSM. In Proc. Electric Power Engineering, 1-5 (2017)
  4. Matsuoka, K.: Development trend of the permanent magnet synchronous motor for railway traction. IEEJ Trans. Elect. Electron. 2(2), 154-161 (2007) https://doi.org/10.1002/tee.20121
  5. Norambuena, M., Rodriguez, J., Zhang, Z., Wang, F., Garcia, C., Kennel, R.: A very simple strategy for high-quality performance of AC machines using model predictive control. IEEE Trans. Power Electron. 34(1), 794-800 (2019) https://doi.org/10.1109/TPEL.2018.2812833
  6. Xu, Y., Morito, C., Lorenz, R.D.: Extending high-speed operating range of induction machine drives using deadbeat-direct torque and flux control with precise flux weakening. IEEE Trans. Ind. Appl. 55(4), 3770-3780 (2019) https://doi.org/10.1109/tia.2019.2908342
  7. Abouzeid, A.F., Guerrero, J.M., Endemano, A., Muniategui, I., Ortega, D., Larrazabal, I., Briz, F.: Control strategies for induction motors in railway traction applications. Energies 13(3), 1-22 (2020)
  8. Kwon, Y.-C., Kim, S., Sul, S.-K.: Voltage feedback current control scheme for improved transient performance of permanent magnet synchronous machine drives. IEEE Trans. Ind. Electron. 59(5), 3373-3382 (2012) https://doi.org/10.1109/TIE.2011.2173097
  9. Yepes, A.G., Doval-Gandoy, J.: Effective current limitation for multifrequency current control with distortion-free voltage saturation and antiwindup. IEEE Trans. Power Electron. 35(12), 13697-13717 (2020) https://doi.org/10.1109/tpel.2020.2995530
  10. Bak, Y., Jang, Y., Lee, K.-B.: Torque predictive control for permanent magnet synchronous motor drives using indirect matrix converter. J. Power Electron. 19(6), 1535-1543 (2019)
  11. Buja, G.S., Kazmierkowski, M.P.: Direct torque control of PWM inverter-fed AC motors - a survey. IEEE Trans. Ind. Electron. 51(4), 744-757 (2004) https://doi.org/10.1109/TIE.2004.831717
  12. Zhang, Y., Zhu, J., Xu, W., Guo, Y.: A simple method to reduce torque ripple in direct torque-controlled permanent-magnet synchronous motor by using vectors with variable amplitude and angle. IEEE Trans. Ind. Electron. 58(7), 2848-2859 (2011) https://doi.org/10.1109/TIE.2010.2076413
  13. Wu, G., Huang, S., Wu, Q., Rong, F., Zhang, C., Liao, W.: Robust predictive torque control of N*3-phase PMSM for high-power traction application. IEEE Trans. Power Electron. 35(10), 10799-10809 (2020) https://doi.org/10.1109/tpel.2020.2981914
  14. Qiu, X., Huang, W., Bu, F.: Torque-angle-based direct torque control for interior permanent-magnet synchronous motor drives in electric vehicles. J. Power Electron. 13(6), 964-974 (2013) https://doi.org/10.6113/JPE.2013.13.6.964
  15. Zhao, S., Huang, X., Fang, Y., Zhang, H.: DC-Link-Fluctuation-Resistant predictive torque control for railway traction permanent magnet synchronous motor in the six-step operation. IEEE Trans. Power Electron. 35(10), 10982-10993 (2020) https://doi.org/10.1109/tpel.2020.2975497
  16. Depenbrock, M.: Direct self-control (DSC) of inverter-fed induction machine. IEEE Trans. Power Electron. 3(4), 420-429 (1988) https://doi.org/10.1109/63.17963
  17. Steimel, A.: Electric traction - motive power and energy supply: basics and practical experience, Oldenbourg Industrievelag, Munich (2007)
  18. Gao, J., Hu, Y.: Direct self-control for BLDC motor drives based on three-dimensional coordinate system. IEEE Trans. Ind. Electron. 57(8), 2836-2844 (2010) https://doi.org/10.1109/TIE.2009.2036027
  19. Shafighy, M., Khoo, S.Y., Kouzani, A.Z.: Modified DSC propulsion systems for efficient direct recovery of regeneration in 25-kV AC traction power supply. IEEE Trans. Transp. Electrif. 3(3), 632-645 (2017) https://doi.org/10.1109/TTE.2017.2675627
  20. Kwon, Y.-C., Kim, S., Sul, S.-K.: Six-step operation of PMSM with instantaneous current control. IEEE Trans. Ind. Appl. 50(4), 2614-2625 (2014) https://doi.org/10.1109/tia.2013.2296652
  21. Kim, S., Seok, J.-K.: Maximum voltage utilization of IPMSMs using modulating voltage scalability for automotive applications. IEEE Trans. Power Electron. 28(12), 5639-5646 (2013) https://doi.org/10.1109/TPEL.2013.2253802
  22. Liu, J., Zhang, W., Xiao, F., Lian, C., Gao, S.: Six-step mode control of IPMSM for railway vehicle traction eliminating the DC offset in input current. IEEE Trans. Power Electron. 34(9), 8981-8993 (2019) https://doi.org/10.1109/tpel.2018.2888877
  23. Yang, H.-Y.O., Lorenz, R.D.: Torque ripple minimization in six-step PMSM drives via variable and fast DC bus dynamics. IEEE Trans. Ind. Appl. 55(4), 3791-3802 (2019) https://doi.org/10.1109/tia.2019.2910450
  24. Inoue, Y., Maeda, Y., Morimoto, S., Sanada, M.: Square-wave operation of direct torque controlled PMSM drive system. In Proc. IEEE Energy Conversion Congress and Exposition, 1801-1807 (2013)
  25. Calleja, C., Lopez-de-Heredia, A., Gaztanaga, H., Aldasoro, L., Nieva, T.: Validation of a modified direct-self-control strategy for PMSM in railway-traction applications. IEEE Trans. Ind. Electron. 63(8), 5143-5155 (2016) https://doi.org/10.1109/TIE.2016.2572661
  26. Ouyang, H., Zhang, K., Zhang, P., Kang, Y., Xiong, J.: Repetitive compensation of fluctuating DC link voltage for railway traction drives. IEEE Trans. Power Electron. 26(8), 2160-2171 (2011) https://doi.org/10.1109/TPEL.2011.2105283