DOI QR코드

DOI QR Code

Simplified model predictive current control strategy for dual five-phase VSI-fed open end load to eliminate common-mode voltage and reduce current harmonics

  • Vu, Huu-Cong (School of Electrical Engineering, University of Ulsan) ;
  • Lee, Hong-Hee (School of Electrical Engineering, University of Ulsan)
  • Received : 2021.02.04
  • Accepted : 2021.05.04
  • Published : 2021.08.20

Abstract

This paper presents a simplified model-predictive current control (MPCC) strategy to eliminate the common mode voltage (CMV) and reduce current harmonics for a dual five-phase voltage source inverter (VSI)-fed open-end load supplied by a single DC source. To eliminate CMV and reduce the current harmonics, 21 virtual voltage vectors were developed as an input control set for the proposed MPCC strategy. In each sampling interval, among the 21 virtual voltage vectors, five virtual voltage vectors were determined according to the position information of the desired voltage vector. Then they were evaluated by a new cost function to choose the best voltage vector. Therefore, the computational burden is significantly reduced since the current prediction calculations are omitted, and the cost function calculations are reduced to 5. The validity of the proposed strategy has been verified by simulation and experimental results.

Keywords

Acknowledgement

This work was supported by the 2019 Research Fund of the University of Ulsan.

References

  1. Tang, G., Kong, W., Zhang, T.: Optimized non-sinusoidal SVPWM method for high power multiphase induction motor drives. J Power Electron 20(4), 938-947 (2020) https://doi.org/10.1007/s43236-020-00084-w
  2. Tran, Q., Lee, H.: An advanced modulation strategy for three-to-five-phase indirect matrix converters to reduce common-mode voltage with enhanced output performance. IEEE Trans Industr Electron 65(7), 5282-5291 (2018) https://doi.org/10.1109/TIE.2017.2782242
  3. Nguyen, T.D., Lee, H.: Development of a three-to-five-phase indirect matrix converter with carrier-based PWM based on space-vector modulation analysis. IEEE Trans Industr Electron 63(1), 13-24 (2016) https://doi.org/10.1109/TIE.2015.2472359
  4. Payami, S., Behera, R.K., Iqbal, A.: DTC of three-level NPC inverter fed five-phase induction motor drive with novel neutral point voltage balancing scheme. IEEE Trans Power Electron 33(2), 1487-1500 (2018) https://doi.org/10.1109/TPEL.2017.2675621
  5. Ahmed, S.M., Abu-Rub, H., Salam, Z.: Common-mode voltage elimination in a three-to-five-phase dual matrix converter feeding a five-phase open-end drive using space-vector modulation technique. IEEE Trans Industr Electron 62(10), 6051-6063 (2015) https://doi.org/10.1109/TIE.2015.2420038
  6. Darijevic, M., Jones, M., Dordevic, O., Levi, E.: Decoupled PWM control of a dual-inverter four-level five-phase drive. IEEE Trans Power Electron 32(5), 3719-3730 (2017) https://doi.org/10.1109/TPEL.2016.2582703
  7. Dabour, S.M., Abdel-Khalik, A.S., Massoud, A.M., Ahmed, S.: Analysis of scalar PWM approach with optimal common-mode voltage reduction technique for five-phase inverters. IEEE J Emerg Sel Topics Power Electron 7(3), 1854-1871 (2019) https://doi.org/10.1109/jestpe.2018.2866028
  8. Bodo, N., Jones, M., Levi, E.: PWM techniques for an open-end winding five phase drive with a single DC source supply. IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society, pp. 3641-3646, https://doi.org/10.1109/IECON.2012.6389313 (2012).
  9. Payami, S., Behera, R.K., Iqbal, A., Al-Ammari, R.: Common-mode voltage and vibration mitigation of a five-phase three-level NPC inverter-fed induction motor drive system. IEEE J Emerg Sel Topics Power Electron 3(2), 349-361 (2015) https://doi.org/10.1109/JESTPE.2014.2313153
  10. Karampuri, R., Jain, S., Somasekhar, V.T.: Sample-averaged zero-sequence current elimination PWM technique for five-phase induction motor with opened stator windings. IEEE J Emerg Sel Topics Power Electron 6(2), 864-873 (2018) https://doi.org/10.1109/jestpe.2017.2759965
  11. Karampuri, R., Jain, S., Somasekhar, V.T.: Common-mode current elimination PWM strategy along with current ripple reduction for open-winding five-phase induction motor drive. IEEE Trans Power Electron 34(7), 6659-6668 (2019) https://doi.org/10.1109/tpel.2018.2873692
  12. Bodo, N., Jones, M., Levi, E.: A space vector PWM with common-mode voltage elimination for open-end winding five-phase drives with a single DC supply. IEEE Trans Industr Electron 61(5), 2197-2207 (2014) https://doi.org/10.1109/TIE.2013.2272273
  13. Belkhode, S., Karampuri, R., Jain, S.: Modified Phase Shifted SVPWM Technique for Five-Phase Open-End Winding Induction Motor with Zero Common Mode Voltage. 2017 14th IEEE India Council International Conference (INDICON), 1-6, https://doi.org/10.1109/INDICON.2017.8487613 (2017).
  14. Belkhode, S., Jain, S.: Optimized switching PWM technique with common-mode current minimization for five-phase open-end winding induction motor drives. IEEE Trans Power Electron 34(9), 8971-8980 (2019) https://doi.org/10.1109/tpel.2018.2888603
  15. Yu, B., Song, W., Li, J., Li, B., Saeed, M.S.R.: Improved finite control set model predictive current control for five-phase VSIs. IEEE Trans Power Electron (2021). https://doi.org/10.1109/TPEL.2020.3034756
  16. Song, W., Xue, C., Wu, X., Yu, B.: Modulated finite-control-set model predictive current control for five-phase voltage-source inverter. IEEE Trans Transp Electrific (2021). https://doi.org/10.1109/TTE.2020.3019208
  17. Xue, C., Song, W., Feng, X.: Finite control-set model predictive current control of five-phase permanent-magnet synchronous machine based on virtual voltage vectors. IET Electric Power Appl 11(5), 836-846 (2017) https://doi.org/10.1049/iet-epa.2016.0529
  18. Kim, K.Y., Bak, Y., Lee, K.-B.: Predictive current control for indirect matrix converter with reduced current ripple. J Power Electron 20(2), 443-454 (2020) https://doi.org/10.1007/s43236-020-00048-0
  19. Vu, H., Choi, S., Lee, H., An Enhanced Load Current Control Scheme to Reduce Computational Burden for Two-Level Symmetrical Six-Phase VSI. 2019 IEEE Vehicle Power and Propulsion Conference (VPPC), 1-5, https://doi.org/10.1109/VPPC46532.2019.8952470 (2019).
  20. Habibullah, M., Lu, D.D., Xiao, D., Rahman, M.F.: A simplified finite-state predictive direct torque control for induction motor drive. IEEE Trans Industr Electron 63(6), 3964-3975 (2016) https://doi.org/10.1109/TIE.2016.2519327
  21. Xia, C., Liu, T., Shi, T., Song, Z.: A simplified finite-control-set model-predictive control for power converters. IEEE Trans Industr Inf 10(2), 991-1002 (2014) https://doi.org/10.1109/TII.2013.2284558
  22. Xie, W., et al.: Finite-control-set model predictive torque control with a deadbeat solution for PMSM drives. IEEE Trans Industr Electron 62(9), 5402-5410 (2015) https://doi.org/10.1109/TIE.2015.2410767
  23. Wang, F., Li, Z., Liu, Z.: Model predictive control methods for three-level sparse neutral point clamped inverter. IEEE J Emerg Sel Topics Power Electron 8(4), 4355-4366 (2020) https://doi.org/10.1109/jestpe.2019.2914764
  24. Iqbal, A., Alammari, R., Mosa M., Abu-Rub H., Finite set model predictive current control with reduced and constant common mode voltage for a five-phase voltage source inverter. 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), 479-484, https://doi.org/10.1109/ISIE.2014.6864660 (2014).
  25. Duran, M. J., Guzman, F., Levi E., Barrero F., Restrained search predictive control for five-phase dual-inverter supplied loads. 2011 International Conference on Power Engineering, Energy and Electrical Drives, 1-6, https://doi.org/10.1109/ISIE.2014.6864660 (2011).
  26. Xue, C., Song, W., Wu, X., Feng, X.: A constant switching frequency finite-control-set predictive current control scheme of a five-phase inverter with duty-ratio optimization. IEEE Trans Power Electron 33(4), 3583-3594 (2018) https://doi.org/10.1109/tpel.2017.2707440
  27. Aciego, J.J., Gonzalez Prieto, I., Duran, M.J.: Model predictive control of six-phase induction motor drives using two virtual voltage vectors. IEEE J Emerg Sel Topics Power Electron 7(1), 321-330 (2019) https://doi.org/10.1109/jestpe.2018.2883359
  28. Vu, H., Lee, H.: Common-mode voltage and current harmonic reduction for five-phase VSIs with model predictive current control. J Power Electron 19(6), 1477-1485 (2019) https://doi.org/10.6113/jpe.2019.19.6.1477
  29. Vu, H., Lee, H.: Model predictive current control scheme for seven-phase voltage source inverter with reduced common-mode voltage and current harmonics. IEEE J Emerg Sel Topics Power Electron (2020). https://doi.org/10.1109/JESTPE.2020.3009392
  30. Cortes, P., Rodriguez, J., Silva, C., Flores, A.: Delay compensation in model predictive current control of a three-phase inverter. IEEE Trans. Industr. Electron. 59(2), 1323-1325 (2012) https://doi.org/10.1109/TIE.2011.2157284
  31. Chowdhury, S., Wheeler, P., Huang, Z., Rivera, M., Gerada, C.: Fixed switching frequency predictive control of an asymmetric source dual inverter system with a floating bridge for multilevel operation. IET Power Electronics 12(3), 450-457 (2018) https://doi.org/10.1049/iet-pel.2018.5395