DOI QR코드

DOI QR Code

Compound control strategy for maximum power point tracking with flexible step-up converters for thin film photovoltaic module applications

  • Liu, Yuhang (The Key Laboratory of Solar Thermal Energy and Photovoltaic Systems, Institute of Electrical Engineering, Chinese Academy of Sciences) ;
  • Liu, Xiangxin (The Key Laboratory of Solar Thermal Energy and Photovoltaic Systems, Institute of Electrical Engineering, Chinese Academy of Sciences) ;
  • Zhang, Jianwei (College of Electric Power, Inner Mongolia University of Technology) ;
  • Zhang, Yufeng (The Key Laboratory of Solar Thermal Energy and Photovoltaic Systems, Institute of Electrical Engineering, Chinese Academy of Sciences) ;
  • Liu, Guangchen (College of Electric Power, Inner Mongolia University of Technology)
  • 투고 : 2021.03.03
  • 심사 : 2021.05.12
  • 발행 : 2021.09.20

초록

This paper proposes a novel maximum power point tracking (MPPT) algorithm for a thin-film photovoltaic (PV) module with a flexible step-up DC-DC converter. To improve the voltage rating for the thin film module, a switch-inductor zero voltage transition (SIZVT) boost converter is proposed. In addition, the proposed methodology uses a multistage variable step size (MVSS) with a power close-loop control strategy (PCLC) for MPPT. The corresponding performances are compared with the classical fixed step size (FSS) algorithm and the conventional variable step size (CVSS) algorithm. Simulation results in MATLAB/Simulink and experimental tests with a 240 W prototype validate the proposed algorithm under a variety of conditions.

키워드

과제정보

This work is sponsored by the Chinese Academy of Sciences President's International Fellowship Initiative (no. 2020VEC0008), Lujiaxi International Team Project of CAS (no. GJTD-2018-05), Research Foundation of IEE, CAS (no. Y710411CSB), National Natural Science Foundation of China (no. 51867020), and Scientifc and Technological Research Foundation of Universities in the Inner Mongolia Autonomous Region (no. NJZY20070).

참고문헌

  1. Tian, Z., Zhang, X., Jin, X., Zhou, X., Si, B., Shi, X.: Towards adoption of building energy simulation and optimization for passive building design: a survey and a review. Energy Build. 158, 1306-1316 (2018) https://doi.org/10.1016/j.enbuild.2017.11.022
  2. Kumar, N., Sudhakar, K., Samykano, M.: Performance evaluation of CdTe BIPV roof and facades in tropical weather conditions. Energy Sources Part A. 42, 1057-1071 (2020) https://doi.org/10.1080/15567036.2019.1602216
  3. Jayathissa, P., Luzzatto, M., Schmidli, J., Hofer, J., Nagy, Z., Schlueter, A.: Optimizing building net energy demand with dynamic BIPV shading. Appl. Energy. 202, 726-735 (2017) https://doi.org/10.1016/j.apenergy.2017.05.083
  4. Sanchez-Palencia, P., Martin-Chivelet, N., Chenlo, F.: Modeling temperature and thermal transmittance of building integrated photovoltaic modules. Sol. Energy. 184, 153-161 (2019) https://doi.org/10.1016/j.solener.2019.03.096
  5. Shukla, A., Sudhakar, K., Baredar, P.: Recent advancement in BIPV product technologies: a review. Energy Build. 140, 188-195 (2017) https://doi.org/10.1016/j.enbuild.2017.02.015
  6. Goetzler, G., Droesch, W.: Research and development needs for building-integrated solar technologies. EERE (2014)
  7. Yadav, S., Panda, S., Hachemvermette, C., Kalogirou, S., Christodoulides, P.: Optimum azimuth and inclination angle of BIPV panel owing to different factors influencing the shadow of adjacent building. Renew. Energ. 162, 381-396 (2020) https://doi.org/10.1016/j.renene.2020.08.018
  8. Gercek, C., Devetakovi, M., Krsti-Furundi, A., Reinders, A.: Energy balance, cost and architectural design features of 24 building integrated photovoltaic projects using a modelling approach. Appl. Sci. 24, 8860 (2020)
  9. Bellia, L., Marino, C., Minichiello, F., Pedace, A.: An overview on solar shading systems for buildings. Energy Procedia 62, 309-317 (2014) https://doi.org/10.1016/j.egypro.2014.12.392
  10. Sande, W., Daenen, M., Spiliotis, K., Goncalves, J., Ravyts,S., Saelens, D.: Reliability comparison of a DC-DC converter placed in building-integrated photovoltaic module frames. Proc. international conference on renewable energy research and application, 14-17 (2018).
  11. Spiliotis, K., Goncalves, J., Van De Sande, W.: Modeling and validation of a DC/DC power converter for building energy simulations: application to BIPV systems. Appl. Energy 240, 646-665 (2019) https://doi.org/10.1016/j.apenergy.2019.02.071
  12. Hao, Y., Li, H., Li, K., Fang, C.: Single-switch boost converter with extremely high step-up voltage gain. J. Power. Electron. 20, 1-11 (2020) https://doi.org/10.1007/s43236-019-00005-6
  13. Amir, A., Che, H.S., Amir, A., El Khateb, A., Abd Rahim, N.: Transformerless high gain boost and buck-boost dc-dc converters based on extendable switched capacitor (sc) cell for stand-alone photovoltaic systems. Sol. Energy 171, 212-222 (2018) https://doi.org/10.1016/j.solener.2018.06.078
  14. Peyghami, S., Davari, P., Wang, H., Blaabjerg, F.: System-level reliability enhancement of dc/dc stage in a single-phase pv inverter. Micr. Reliab. 88-90, 1030-1035 (2018) https://doi.org/10.1016/j.microrel.2018.07.112
  15. Lee, S., Chu, B., Lim, C.: Lee, K: Two-inductor non-isolated dc-dc converter with high step-up voltage gain. Renew. J. Power. Elctron. 19, 1069-1073 (2019)
  16. Christidis, G.C., Kyritsis, A.C., Papanikolaou, N.P., Tatakis, E.C.: Investigation of parallel active filters' limitations for power decoupling on single-stage/single-phase microinverters. IEEE J. EM. SEL. TOP. P 4, 1096-1106 (2016) https://doi.org/10.1109/JESTPE.2016.2552980
  17. Schmitz, L., Martins, D.C., Coelho, R.F.: Generalized high step-up dc-dc boost-based converter with gain cell. Circuits Syst. I IEEE Trans. 2, 1-14 (2017)
  18. Messalti, S., Harrag, A., Loukriz, A.: A new variable step size neural networks MPPT controller: review, simulation and hardware implementation. Renew. Sustain. Energy Rev. 68, 221-233 (2017) https://doi.org/10.1016/j.rser.2016.09.131
  19. Forouzesh, M., Siwakoti, Y., Gorji, S.A., Blaabjerg, F., Lehman, B.: Step-up DC-DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE Trans. Power Electron. 32, 9143-9178 (2017) https://doi.org/10.1109/TPEL.2017.2652318
  20. Fathabadi, H.: Novel high efficiency DC/DC boost converter for using in photovoltaic systems. Sol. Energy. 125, 22-31 (2016) https://doi.org/10.1016/j.solener.2015.11.047
  21. Yatimi, H., Aroudam, E.: Assessment and control of a photovoltaic energy storage system based on the robust sliding mode MPPT controller. Sol. Energy 139, 557-568 (2016) https://doi.org/10.1016/j.solener.2016.10.038
  22. Belhimer, S., Haddadi, M., Mellit, A.: A novel hybrid boost converter with extended duty cycles range for tracking the maximum power point in photovoltaic system applications. Int. J. Hydrogen Energy. 43, 6887-6898 (2018) https://doi.org/10.1016/j.ijhydene.2018.02.136
  23. Alik, R., Jusoh, A.: Modified perturb and observe (P&O) with checking algorithm under various solar irradiation. Sol. Energy. 148, 128-139 (2017) https://doi.org/10.1016/j.solener.2017.03.064
  24. Romo, D., Loera-Palomo, R., Rivero, M.: Averaged current mode control for maximum power point tracking in high-gain photovoltaic applications. J. Power. Elctron. 20, 1650-1661 (2020) https://doi.org/10.1007/s43236-020-00144-1
  25. Kaced, K., Larbes, C., Ramzan, N., Bounabi, M.: Bat algorithm based maximum power point tracking for photovoltaic system under partial shading conditions. Sol. Energy. 158, 490-503 (2017) https://doi.org/10.1016/j.solener.2017.09.063
  26. Bradai, R., Boukenoui, R., Kheldoun, A., Salhi, H., Ghanes, M.: Experimental assessment of new fast MPPT algorithm for PV systems under nonuniform irradiance conditions. Appl. Energy. 199, 416-429 (2017) https://doi.org/10.1016/j.apenergy.2017.05.045
  27. Liu, Y., Liu, X., Zhang, J., Zhang, Y., Zhu, Z.: A novel maximum power point tracking control strategy for the building integrated photovoltaic system. Energies 13, 11 (2020) https://doi.org/10.3390/en13010011