DOI QR코드

DOI QR Code

Input-series hybrid dual active bridge DC-DC converter combined with LC resonant tank

  • Fu, Chao (Department of Electrical Engineering, North China Electrical Power University) ;
  • Xu, Chongwei (Department of Electrical Engineering, North China Electrical Power University) ;
  • Sun, Yuwei (Department of Electrical Engineering, North China Electrical Power University)
  • Received : 2020.10.15
  • Accepted : 2021.05.03
  • Published : 2021.08.20

Abstract

This paper presents an input-series hybrid dual active bridge (DAB) converter for efficiency improvement. The proposed converter is achieved by integrating a series resonant tank (SRT) into a single phase-shift (SPS) controlled DAB that shares one H-bridge at the secondary side. By using the super-resonant state of the LC tank, the phase correction of the secondary side H-bridge current can be obtained to realize zero voltage switching (ZVS), zero current switching (ZCS), and full load ZVS for the primary side bridges. In addition, the circulating current is reduced when compared to that of the traditional input-series DAB converter based on SPS control, which improves the overall efficiency. The system modelling and parameters design procedures are provided. Finally, a 1-kW experimental prototype was built, and the soft-switching performance was tested. The obtained results verify the effectiveness of the proposed topology and demonstrate a significant efficiency improvement.

Keywords

Acknowledgement

This work was supported in part by the Natural Science Foundation of Hebei Province, China, under Grant E2019502172, and in part by the Fundamental Research Funds for the Central Universities, under Grant 2019MS075. The authors would like to thank Zhen Gao for his previous work.

References

  1. Dudley, B.: BP statistical review of word energy 2017. British Petroleum Co., London (2017)
  2. Faisal, M., Hannan, M.-A., Ker, P.-J., Hussain, A., Mansur, M., Blaabjerg, F.: Review of energy storage system technologies in microgrid applications: issues and challenges. IEEE Access. 6, 35143-35164 (2018) https://doi.org/10.1109/access.2018.2841407
  3. Boroyevich, D., Cvetkovic, I., Dong, D., Burgos, R., Wang, F., Lee, F. (2010) Future electronic power distribution systems a contemplative view. Proc. 12th Int. Conf. Optim. Elect. Electron. Equip 1369-1380
  4. De Doncker, R.-W., Divan, D. M. and Kheraluwala, M.-H. (1988) A three phase soft switched high power density DC/DC converter for high power applications. Proc. Conf. Rec. IEEE Ind. Appl. Soc. Annu. Meet. 1, 796-805
  5. De Doncker, R.-W., Divan, D.-M., Kheraluwala, M.-H.: A three phase soft switched high power density DC/DC converter for high power applications. IEEE Trans. Ind. Appl 27(1), 63-73 (1991) https://doi.org/10.1109/28.67533
  6. Inoue, S., Akagi, H., et al.: A bidirectional isolated DC-DC converter as a core circuit of the next-generation medium-voltage power conversion system[J]. IEEE Trans. Power Electron. 22(2), 535-542 (2007) https://doi.org/10.1109/TPEL.2006.889939
  7. Zhao, B., Song, Q., Liu, W.-H.: Power characterization of isolated bidirectional dual-active-bridge DC-DC converter with dual-phase-shift control[J]. IEEE Trans. Power Electron. 27(9), 4172-4176 (2012) https://doi.org/10.1109/TPEL.2012.2189586
  8. Falcones, S.: A DC-DC multiport-converter-based solid-state transformer integrating distributed generation and storage[J]. IEEE Trans. Power Electron. 28(5), 2192-2203 (2013) https://doi.org/10.1109/TPEL.2012.2215965
  9. Li, X., Bhat, A.: Analysis and design of high-frequency isolated dual-bridge series resonant DC/DC converter[J]. IEEE Trans. Power Electron. 25(4), 850-862 (2010) https://doi.org/10.1109/TPEL.2009.2034662
  10. Alonso, A.-R., Sebastian, J., Lamar, D.-G., et al. (2010) An overall study of a Dual Active Bridge for bidirectional DC/DC conversion. Energy Convers. Congr. Expo. 1129-1135
  11. Wang, C., Sha, G.-L., Wang, J., et al.: The analysis of zero voltage switching dual active bridge DC-DC converters based on dual-phase-shifting control[J]. Trans. China Electrotech. Soc. 30(12), 106-113 (2015)
  12. Bai, H., Mi, C.: Eliminate reactive power and increase system efficiency of isolated bidirectional Dual-Active-Bridge DC-DC converters using novel Dual-Phase-Shift control. IEEE Trans. Power Electron 23(6), 2905-2914 (2008) https://doi.org/10.1109/TPEL.2008.2005103
  13. Zhao, B., Song, Q., Liu, W.-H.: Power characterization of isolated bidirectional dual-active-bridge DC-DC converter with dual-phase-shift control. IEEE Trans. Power Electron 27(9), 4172-4176 (2012) https://doi.org/10.1109/TPEL.2012.2189586
  14. Liu, X., Zhu, Z.-Q., Stone, D.-A., et al.: Novel dual phase shift control with bidirectional inner phase shifts for a dual active bridge converter having low surge current and stable power control. IEEE Trans. Power Electron 32(5), 4095-5006 (2017) https://doi.org/10.1109/TPEL.2016.2593939
  15. Huang, J., Wang, Y., Li, Z., Lei, W.: Unified triple-phase-shift control to minimize current stress and achieve full soft-switching of isolated bidirectional DC-DC converter. IEEE Trans. Ind. Electron 63(7), 4169-4179 (2016) https://doi.org/10.1109/TIE.2016.2543182
  16. Zhao, B., Yu, Q., Sun, W.: Extended-phase-shift control of isolated bidirectional DC-DC converter for power distribution in microgrid. IEEE Trans. Power Electron 27(11), 4667-4680 (2012) https://doi.org/10.1109/TPEL.2011.2180928
  17. Shi, H.-C., Wen, H.-Q., Chen, J.: Minimum backflow power scheme of DAB based solid state transformer with extended phase shift control. IEEE Tans. Ind. Appl. 54(4), 3483-3496 (2018) https://doi.org/10.1109/TIA.2018.2819120
  18. Shi, H.-C., Wen, H.-Q., Chen, J., et al.: Minimum reactive power scheme of dual active bridge DC-DC converter with three level modulated phase shift control. IEEE Trans. Power Electron 53(6), 5573-5585 (2017)
  19. Karthikeyan, V., Gupta, R.: FRS-DAB converter for elimination of circulation power flow at input and output ends. IEEE Trans. Ind. Electron 65(3), 2135-2144 (2018) https://doi.org/10.1109/tie.2017.2740853
  20. Xu, G., Sha, D., Xu, Y., Liao, X.: Match control for wide voltage conversion gain application. IEEE Trans. Power Electron 33(2), 1378-1388 (2018) https://doi.org/10.1109/TPEL.2017.2678524
  21. Ruan, X., Chen, W., Cheng, L., Tse, C.-K., Yan, H., et al.: Control strategy for input-series-output-parallel converters. IEEE Trans. Ind. Electron 56(4), 1174-1185 (2009) https://doi.org/10.1109/TIE.2008.2007980
  22. Guo, Z., Sha, D., Song, K.: Output-series connected dual active bridge converters for zero voltage switching throughout full load range by employing auxiliary LC networks. IEEE Trans. Ind. Electron 34(6), 5549-5562 (2019) https://doi.org/10.1109/TPEL.2018.2869859
  23. Wang, Z.-L., Xiao, K., Zhao, P.: Researches on combined input-series output-parallel systems composed of full-bridge DC transformers and converter[J]. Proc. CSEE 34(33), 5819-5826 (2014)
  24. Zhang, K., Shan, Z.-Y., Jatskevich, J.: Large-and small-signal average-value modeling of dual-active- bridge DC-DC converter considering power losses[J]. IEEE Trans. Power Electron. 32(3), 1964-1974 (2017) https://doi.org/10.1109/TPEL.2016.2555929
  25. Li, J., Ruan, X.-B.: Hybrid control strategy of full bridge LLC converters[J]. Trans. China Electrotech. Soc. 28(4), 72-79 (2013)
  26. Chen, S., Lu, Z.-Y., Yao, W.: Research and verification on LLC resonant soft switching DC-DC transformer[J]. Trans. China Electro-tech. Soc. 27(10), 163-169 (2012)
  27. Jiang, T.-Y., Zhang, J.-M., Wang, Y.-S.: Bidirectional LLC resonant converter with synchronous control method[J]. Trans. China Electrotech. Soc. 30(12), 87-96 (2015)