DOI QR코드

DOI QR Code

Z-domain modeling of peak current mode control for full-bridge DC-DC buck converters

  • Wang, Xiaohong (School of Automation Science and Engineering, South China University of Technology) ;
  • Huang, Qisong (School of Automation Science and Engineering, South China University of Technology) ;
  • Zhang, Bo (School of Automation Science and Engineering, South China University of Technology) ;
  • Chen, Di (School of Automation Science and Engineering, South China University of Technology) ;
  • Guan, Quanxue (Department of Electrical and Electronic Engineering, University of Nottingham)
  • Received : 2020.08.01
  • Accepted : 2020.09.11
  • Published : 2021.01.20

Abstract

Traditional local-averaged state-space modeling for peak current mode (PCM) controls fails to explain the subharmonic oscillation phenomenon when the spectrum is higher than half of the switching frequency. To address this problem, this paper presents a small-signal modeling method in the z-domain, and builds a discrete linear model for the current loop of a full-bridge DC-DC converter. This discrete model is converted into a second-order continuous model that is able to represent the system performance with a wider frequency range. A frequency-domain analysis shows that this model can be used to explain the subharmonic oscillations and unstable characteristics. This provides an engineering guideline for the practical design of slope compensation. The effectiveness of the proposed modeling method has been verified by simulation and experimental results with a prototype working in the Buck mode.

Keywords

Acknowledgement

This work was supported in part by the Science and Technology Major Project of Guangdong Province under Grant 2016B090911003, Science and Technology Major Project of Guangzhou under Grant 201902010066 and the National Natural Science Foundation of China under Grant 51707042.

References

  1. Abdelhamid, E., Bonanno, G., Corradini, L., Mattavelli, P., Agostinelli, M.: Stability properties of the 3-Level fying capacitor buck converter under peak or valley current programmed control. IEEE Trans. Power Electron. 34(8), 8031-8044 (2019) https://doi.org/10.1109/tpel.2018.2877943
  2. Kobayashi, N., Hayashi, Y., Iyasu, S., Handa, Y.: Fast current control of the single-phase DC-AC converter using digital peak current mode control. In: 2019 21st European Conference on Power Electronics and Applications, pp. 1-7, Genova (2019)
  3. Bao, B., Zhang, X., Bao, H., Wu, P., Wu, Z., Chen, M.: Dynamical effects of memristive load on peak current mode buck-boost switching converter. Chaos Solitons Fractals 122, 69-79 (2019) https://doi.org/10.1016/j.chaos.2019.03.003
  4. Cheng, C.-H., Chen, C.-J., Wang, S.-S.: Small-signal model of flyback converter in continuous-conduction mode with peak-current control at variable switching frequency. IEEE Trans. Power Electron. 33(5), 4145-4156 (2018) https://doi.org/10.1109/tpel.2017.2716830
  5. Leng, M., Zhou, G., Zhou, S., Zhang, K., Xu, S.: Stability analysis for peak current-mode controlled buck LED driver based on discrete-time modeling. IEEE J. Emerg. Sel. Topics Power Electron. 6(3), 1567-1580 (2018) https://doi.org/10.1109/jestpe.2017.2781361
  6. Taeed F., Nymand, M.: A new simple and high performance digital peak current mode controller for DC-DC converters. In: 2014 IEEE Applied Power Electronics Conference and Exposition, pp. 1213-1218 (2014)
  7. Sha, J., Xu, D., Chen, Y., Xu, J., Williams, B.W.: A peak-capacitor-current pulse-train-controlled buck converter with fast transient response and a wide load range. IEEE Trans. Ind. Electron. 63(3), 1528-1538 (2016) https://doi.org/10.1109/TIE.2015.2494851
  8. Kajiwara, K., Maruta, H., Shibata, Y., Matsui, N., Kurokawa F., Hirose, K.: Wide input digital peak current mode DC-DC converter for DC power feeding system. In: IEEE International Telecommunications Energy Conference, pp. 1-4 (2016)
  9. Ramya Chandranadhan V., Renjini G.: Comparison between peak and average current mode control of improved bridgeless flyback rectifier with bidirectional switch. In: International Conference on Technological Advancements in Power and Energy, pp. 254-259 (2015)
  10. Xie, G., Xu, H.: Modeling of current programmed mode non-ideal buck converter systems. Proc. CSEE 32(24), 52-58 (2012)
  11. Nam, H., Ahn, Y., Roh, J.: 5-V buck converter using 3.3-V standard CMOS process with adaptive power transistor driver increasing efficiency and maximum load capacity. IEEE Trans. Power Electron. 27(1), 463-471 (2012) https://doi.org/10.1109/TPEL.2010.2091287
  12. Liu, J., Wang, P., Kuo, T.: A current-mode DC-DC buck converter with efficiency-optimized frequency control and reconfigurable compensation. IEEE Trans. Power Electron. 27(2), 869-880 (2012) https://doi.org/10.1109/TPEL.2011.2162079
  13. Salem, M., Jusoh, A., et al.: Steady state and generalized state space averaging analysis of the series resonant converter. In: 3rd IET International Conference, Clean Energy and Technology, pp. 1-5 (2014)
  14. Ridley, R.B.: A new, continuous-time model for current-mode control. IEEE Trans. Power Electron. 6(2), 271-280 (2002) https://doi.org/10.1109/63.76813
  15. Murthy, A., Badawy, M.: State space averaging model of a dual stage converter in discontinuous conduction mode. In: IEEE 18th Workshop on Control and Modeling for Power Electronics, pp. 1-7 (2017)
  16. Salem, M., Jusoh, A., Idris, N.R.N., Alhamrouni, I.: Modeling and simulation of generalized state space averaging for series resonant converter. In: Australasian Universities Power Engineering Conference, pp. 1-5 (2014)
  17. Budaes, M., Goras, L.: An averaging small-signal model for a DC-DC switched capacitor converter. In: International Semiconductor Conference, pp. 547-550 (2007)
  18. Mayer, E. A.: Using modified z-transforms to model the step response of the peak current-mode controlled buck converter. In: IEEE International Conference on Electro/Information Technology, pp. 193-196 (2008)
  19. Mayer, E.A., King, R.J.: An improved sampled-data current-mode-control model which explains the effects of control delay. IEEE Trans. Power Electron. 16(3), 369-374 (2001) https://doi.org/10.1109/63.923769
  20. VandeSype, D.M., DeGusseme, K., DeBelie, F.M.L.L., Vanden-Bossche, A.P., Melkebeek, J.A.: Small-signal z-domain analysis of digitally controlled converters. IEEE Trans. Power Electron. 21(2), 470-478 (2006) https://doi.org/10.1109/TPEL.2005.869758
  21. Suryanarayana, K., Prabhu, L.V., Anantha, S., Vishwas, K.: Analysis and modeling of digital peak current mode control. In: IEEE International Conference on Power Electronics, Drives and Energy Systems, pp. 1-6 (2012)
  22. Wang, H., Wu, Y.: Modeling and simulation of FB ZVS-PWM converter. Telecom Power Technol. 25(5), 41-45 (2008) https://doi.org/10.3969/j.issn.1009-3664.2008.05.013
  23. Chen, S.: Small-signal model for a flyback converter with peak current mode control. IET Power Electron. 7(4), 805-810 (2014) https://doi.org/10.1049/iet-pel.2013.0326
  24. Fang, C., Chen, C.: Subharmonic instability limits for V2-controlled buck converter with outer loop closed/open. IEEE Trans. Power Electron. 31(2), 1657-1664 (2016) https://doi.org/10.1109/TPEL.2015.2420793
  25. Peng, C., Wu, M., Yue, D.: Working region and stability analysis of PV cells under the peak-current-mode Control. IEEE Trans. Control Syst. Technol. 26(1), 352-359 (2018) https://doi.org/10.1109/TCST.2017.2661827
  26. Wei, L., Liu, Y., Zhang, Y.: Sub-harmonic oscillation of switching power supply with peak-current mode. Inf. Electron. Eng. 7(4), 330-334 (2009) https://doi.org/10.3969/j.issn.1672-2892.2009.04.019
  27. Basak, B., Parui, S.: Exploration of bifurcation and chaos in buck converter supplied from a rectifier. IEEE Trans. Power Electron. 25(6), 1556-1564 (2010) https://doi.org/10.1109/TPEL.2009.2035500
  28. Zhang, Y., Qin, H., Qu, Y., Wu, J.: Chaos phenomenon in the DC-DC switching converters. In: Proceedings of the 10th World Congress on Intelligent Control and Automation, pp. 2039-2043 (2012)
  29. Gavagsaz-Ghoachani, R., et al.: Estimation of the bifurcation point of a modulated-hysteresis current-controlled DC-DC boost converter: stability analysis and experimental verifcation. IET Power Electron. 8(11), 2195-2203 (2015) https://doi.org/10.1049/iet-pel.2015.0078
  30. Zhu, D., Wang, Y., Duan J., Wang, R.: Modeling and bifurcation analysis of buck converters under peak current-mode control. In: Chinese Automation Congress, pp. 2563-2568 (2018)
  31. Yan, Y., Lee, F.C., Mattavelli, P.: I^2 Average current mode control for switching converters. IEEE Trans. Power Electron. 29(4), 2027-2036 (2014) https://doi.org/10.1109/TPEL.2013.2265381
  32. Hallworth, M., Shirsavar, S.A.: Microcontroller-based peak current mode control using digital slope compensation. IEEE Trans. Power Electron. 27(7), 3340-3351 (2012) https://doi.org/10.1109/TPEL.2011.2182210
  33. Tian, F., Kasemsan, S., Batarseh, I.: An adaptive slope compensation for the single-stage inverter with peak current-mode control. IEEE Trans. Power Electron. 26(10), 2857-2862 (2011) https://doi.org/10.1109/TPEL.2009.2022297
  34. El Aroudi, A., Mandal, K., Giaouris, D., et al.: Self-compensation of DC-DC converters under peak current mode control. Electron. Lett. 53(5), 345-347 (2017) https://doi.org/10.1049/el.2016.4082
  35. Taeed, F., Nymand, M.: High-performance digital replica of analogue peak current mode control for DC-DC converter. IET Power Electron. 9(4), 809-816 (2016) https://doi.org/10.1049/iet-pel.2015.0166

Cited by

  1. Thermodynamic and economic analysis of the air source heat pump system with direct-condensation radiant heating panel vol.225, 2021, https://doi.org/10.1016/j.energy.2021.120195