DOI QR코드

DOI QR Code

The effects of physical decontamination methods on zirconia implant surfaces: a systematic review

  • Received : 2020.08.06
  • Accepted : 2021.03.05
  • Published : 2021.10.30

Abstract

Purpose: Peri-implantitis therapy and implant maintenance are fundamental practices to enhance the longevity of zirconia implants. However, the use of physical decontamination methods, including hand instruments, polishing devices, ultrasonic scalers, and laser systems, might damage the implant surfaces. The aim of this systematic review was to evaluate the effects of physical decontamination methods on zirconia implant surfaces. Methods: A systematic search was conducted using 5 electronic databases: Ovid MEDLINE, PubMed, Scopus, Web of Science, and Cochrane. Hand searching of the OpenGrey database, reference lists, and 6 selected dental journals was also performed to identify relevant studies satisfying the eligibility criteria. Results: Overall, 1049 unique studies were identified, of which 11 studies were deemed suitable for final review. Air-abrasive devices with glycine powder, prophylaxis cups, and ultrasonic scalers with non-metal tips were found to cause minimal to no damage to implantgrade zirconia surfaces. However, hand instruments and ultrasonic scalers with metal tips have the potential to cause major damage to zirconia surfaces. In terms of laser systems, diode lasers appear to be the most promising, as no surface alterations were reported following their use. Conclusion: Air-abrasive devices and prophylaxis cups are safe for zirconia implant decontamination due to preservation of the implant surface integrity. In contrast, hand instruments and ultrasonic scalers with metal tips should be used with caution. Recommendations for the use of laser systems could not be fully established due to significant heterogeneity among included studies, but diode lasers may be the best-suited system. Further research-specifically, randomised controlled trials-would further confirm the effects of physical decontamination methods in a clinical setting.

Keywords

Acknowledgement

This systematic review was supported by the College of Medicine and Dentistry, James Cook University, Australia and an Australian Dental Research Foundation grant.

References

  1. Stanford CM. Dental implants. A role in geriatric dentistry for the general practice? J Am Dent Assoc 2007;138 Suppl:34S-40S. https://doi.org/10.14219/jada.archive.2007.0361
  2. Ozkurt Z, Kazazoglu E. Zirconia dental implants: a literature review. J Oral Implantol 2011;37:367-76. https://doi.org/10.1563/AAID-JOI-D-09-00079
  3. Apratim A, Eachempati P, Krishnappa Salian KK, Singh V, Chhabra S, Shah S. Zirconia in dental implantology: a review. J Int Soc Prev Community Dent 2015;5:147-56. https://doi.org/10.4103/2231-0762.158014
  4. Kim KT, Eo MY, Nguyen TT, Kim SM. General review of titanium toxicity. Int J Implant Dent 2019;5:10. https://doi.org/10.1186/s40729-019-0162-x
  5. Sivaraman K, Chopra A, Narayan AI, Balakrishnan D. Is zirconia a viable alternative to titanium for oral implant? A critical review. J Prosthodont Res 2018;62:121-33. https://doi.org/10.1016/j.jpor.2017.07.003
  6. Roehling S, Schlegel KA, Woelfler H, Gahlert M. Zirconia compared to titanium dental implants in preclinical studies-a systematic review and meta-analysis. Clin Oral Implants Res 2019;30:365-95. https://doi.org/10.1111/clr.322_13509
  7. Klinge B, Klinge A, Bertl K, Stavropoulos A. Peri-implant diseases. Eur J Oral Sci 2018;126 Suppl 1:88-94. https://doi.org/10.1111/eos.12529
  8. Caton JG, Armitage G, Berglundh T, Chapple IL, Jepsen S, Kornman KS, et al. A new classification scheme for periodontal and peri-implant diseases and conditions - Introduction and key changes from the 1999 classification. J Clin Periodontol 2018;45 Suppl 20:S1-8. https://doi.org/10.1111/jcpe.12935
  9. Prathapachandran J, Suresh N. Management of peri-implantitis. Dent Res J (Isfahan) 2012;9:516-21. https://doi.org/10.4103/1735-3327.104867
  10. Atieh MA, Alsabeeha NH, Faggion CM Jr, Duncan WJ. The frequency of peri-implant diseases: a systematic review and meta-analysis. J Periodontol 2013;84:1586-98.
  11. Dhir S. Biofilm and dental implant: The microbial link. J Indian Soc Periodontol 2013;17:5-11. https://doi.org/10.4103/0972-124X.107466
  12. Valente NA, Andreana S. Peri-implant disease: what we know and what we need to know. J Periodontal Implant Sci 2016;46:136-51. https://doi.org/10.5051/jpis.2016.46.3.136
  13. Heitz-Mayfield LJ. Diagnosis and management of peri-implant diseases. Aust Dent J 2008;53 Suppl 1:S43-8. https://doi.org/10.1111/j.1834-7819.2008.00041.x
  14. Teughels W, Van Assche N, Sliepen I, Quirynen M. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res 2006;17 Suppl 2:68-81. https://doi.org/10.1111/j.1600-0501.2006.01353.x
  15. Subramani K, Jung RE, Molenberg A, Hammerle CH. Biofilm on dental implants: a review of the literature. Int J Oral Maxillofac Implants 2009;24:616-26.
  16. Guarnieri R, Testarelli L, Zuffetti F, Bertani P, Testori T. Comparative results of single implants with and without laser-microgrooved collar placed and loaded with different protocols: a long-term (7 to 10 years) retrospective multicenter study. Int J Oral Maxillofac Implants 2020;35:841-9. https://doi.org/10.11607/jomi.7605
  17. Al-Hashedi AA, Laurenti M, Benhamou V, Tamimi F. Decontamination of titanium implants using physical methods. Clin Oral Implants Res 2017;28:1013-21. https://doi.org/10.1111/clr.12914
  18. Louropoulou A, Slot DE, Van der Weijden FA. Titanium surface alterations following the use of different mechanical instruments: a systematic review. Clin Oral Implants Res 2012;23:643-58. https://doi.org/10.1111/j.1600-0501.2011.02208.x
  19. Louropoulou A, Slot DE, Van der Weijden F. The effects of mechanical instruments on contaminated titanium dental implant surfaces: a systematic review. Clin Oral Implants Res 2014;25:1149-60. https://doi.org/10.1111/clr.12224
  20. Moher D, Liberati A, Tetzlaff J, Altman DGPRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097. https://doi.org/10.1371/journal.pmed.1000097
  21. Tan NC, Khan A, Antunes E, Miller C, Sharma D. Effect of physical decontamination methods on zirconia implant surfaces: a systematic review (PROSPERO protocol No. CRD42020173316) [Internet]. York, UK: University of York; 2020 [updated 2020 Dec 15; cited 2021] Available from: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD4202017331622.
  22. Faggion CM Jr. Guidelines for reporting pre-clinical in vitro studies on dental materials. J Evid Based Dent Pract 2012;12:182-9. https://doi.org/10.1016/j.jebdp.2012.10.001
  23. Luo JD, Miller C, Jirjis T, Nasir M, Sharma D. The effect of non-steroidal anti-inflammatory drugs on the osteogenic activity in osseointegration: a systematic review. Int J Implant Dent 2018;4:30. https://doi.org/10.1186/s40729-018-0141-7
  24. Atkins D, Best D, Briss PA, Eccles M, Falck-Ytter Y, Flottorp S, et al. Grading quality of evidence and strength of recommendations. BMJ 2004;328:1490. https://doi.org/10.1136/bmj.328.7454.1490
  25. Alhaidary D, Hilgers RD, Gutknecht N. Surface roughness alterations of zirconia implants after Er:YAG laser irradiation: a preliminary study. Lasers in Dental Science 2019;3:269-73. https://doi.org/10.1007/s41547-019-00078-3
  26. Checketts MR, Turkyilmaz I, Asar NV. An investigation of the effect of scaling-induced surface roughness on bacterial adhesion in common fixed dental restorative materials. J Prosthet Dent 2014;112:1265-70. https://doi.org/10.1016/j.prosdent.2014.04.005
  27. Huang YS, Hung CY, Huang HH. Surface changes and bacterial adhesion on implant abutment materials after various clinical cleaning procedures. J Chin Med Assoc 2019;82:643-50. https://doi.org/10.1097/JCMA.0000000000000139
  28. Kushima SS, Nagasawa M, Shibli JA, Brugnera A Jr, Rodrigues JA, Cassoni A. Evaluation of temperature and roughness alteration of diode laser irradiation of zirconia and titanium for peri-implantitis treatment. Photomed Laser Surg 2016;34:194-9. https://doi.org/10.1089/pho.2015.4026
  29. Lang MS, Cerutis DR, Miyamoto T, Nunn ME. Cell attachment following instrumentation with titanium and plastic instruments, diode laser, and titanium brush on titanium, titanium-zirconium, and zirconia surfaces. Int J Oral Maxillofac Implants 2016;31:799-806. https://doi.org/10.11607/jomi.4440
  30. Miranda PV, Rodrigues JA, Blay A, Shibli JA, Cassoni A. Surface alterations of zirconia and titanium substrates after Er,Cr:YSGG irradiation. Lasers Med Sci 2015;30:43-8. https://doi.org/10.1007/s10103-013-1516-x
  31. Nakazawa K, Nakamura K, Harada A, Shirato M, Inagaki R, Ortengren U, et al. Surface properties of dental zirconia ceramics affected by ultrasonic scaling and low-temperature degradation. PLoS One 2018;13:e0203849. https://doi.org/10.1371/journal.pone.0203849
  32. Seol HW, Heo SJ, Koak JY, Kim SK, Baek SH, Lee SY. Surface alterations of several dental materials by a novel ultrasonic scaler tip. Int J Oral Maxillofac Implants 2012;27:801-10.
  33. Stubinger S, Homann F, Etter C, Miskiewicz M, Wieland M, Sader R. Effect of Er:YAG, CO2 and diode laser irradiation on surface properties of zirconia endosseous dental implants. Lasers Surg Med 2008;40:223-8. https://doi.org/10.1002/lsm.20614
  34. Vigolo P, Buzzo O, Buzzo M, Mutinelli S. An in vitro evaluation of alumina, zirconia, and lithium disilicate surface roughness caused by two scaling instruments. J Prosthodont 2017;26:129-35. https://doi.org/10.1111/jopr.12424
  35. Vigolo P, Motterle M. An in vitro evaluation of zirconia surface roughness caused by different scaling methods. J Prosthet Dent 2010;103:283-7. https://doi.org/10.1016/S0022-3913(10)60059-5
  36. Tavakoli J, Khosroshahi ME. Surface morphology characterization of laser-induced titanium implants: lesson to enhance osseointegration process. Biomed Eng Lett 2018;8:249-57. https://doi.org/10.1007/s13534-018-0063-6
  37. Rosa MB, Albrektsson T, Francischone CE, Schwartz Filho HO, Wennerberg A. The influence of surface treatment on the implant roughness pattern. J Appl Oral Sci 2012;20:550-5. https://doi.org/10.1590/S1678-77572012000500010
  38. Rashid H. Evaluation of the surface roughness of a standard abraded dental porcelain following different polishing techniques. J Dent Sci 2012;7:184-9. https://doi.org/10.1016/j.jds.2012.03.017
  39. Renvert S, Hirooka H, Polyzois I, Kelekis-Cholakis A, Wang HLWorking Group 3. Diagnosis and non-surgical treatment of peri-implant diseases and maintenance care of patients with dental implants - Consensus report of working group 3. Int Dent J 2019;69 Suppl 2:12-7. https://doi.org/10.1111/idj.12490
  40. Lollobrigida M, Fortunato L, Serafini G, Mazzucchi G, Bozzuto G, Molinari A, et al. The prevention of implant surface alterations in the treatment of peri-implantitis: comparison of three different mechanical and physical treatments. Int J Environ Res Public Health 2020;17:2624. https://doi.org/10.3390/ijerph17082624
  41. Louropoulou A, Slot DE, Van der Weijden F. Influence of mechanical instruments on the biocompatibility of titanium dental implants surfaces: a systematic review. Clin Oral Implants Res 2015;26:841-50. https://doi.org/10.1111/clr.12365
  42. Sanon C, Chevalier J, Douillard T, Kohal RJ, Coelho PG, Hjerppe J, et al. Low temperature degradation and reliability of one-piece ceramic oral implants with a porous surface. Dent Mater 2013;29:389-97. https://doi.org/10.1016/j.dental.2013.01.007
  43. Renvert S, Polyzois I, Claffey N. How do implant surface characteristics influence peri-implant disease? J Clin Periodontol 2011;38 Suppl 11:214-22. https://doi.org/10.1111/j.1600-051X.2010.01661.x
  44. Bollen CM, Papaioanno W, Van Eldere J, Schepers E, Quirynen M, van Steenberghe D. The influence of abutment surface roughness on plaque accumulation and peri-implant mucositis. Clin Oral Implants Res 1996;7:201-11. https://doi.org/10.1034/j.1600-0501.1996.070302.x
  45. Kotsakis GA, Konstantinidis I, Karoussis IK, Ma X, Chu H. Systematic review and meta-analysis of the effect of various laser wavelengths in the treatment of peri-implantitis. J Periodontol 2014;85:1203-13. https://doi.org/10.1902/jop.2014.130610
  46. Garcia JC, Sanz Lobera A, Maresca P, Pareja TF, Wang C. Some considerations about the use of contact and confocal microscopy methods in surface texture measurement. Materials (Basel) 2018;11:1484. https://doi.org/10.3390/ma11081484