Acknowledgement
The authors are profoundly grateful to the financial supports of the National Natural Science Foundation Projects of China (No. 11975085 and No. 11875117), and Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education of China (No. ARES-2020-01)
References
- X. Hou, Z. Sun, W. Lei, Capability of RELAP5 code to simulate the thermal-hydraulic characteristics of open natural circulation, Ann. Nucl. Energy 109 (2017) 612-625. https://doi.org/10.1016/j.anucene.2017.06.010
- S. Shi, J.P. Schlegel, C.S. Brooks, Y.-C. Lin, J. Eoh, Z. Liu, Q. Zhu, Y. Liu, T. Hibiki, M. Ishii, Experimental investigation of natural circulation instability in a BWR-type small modular reactor, Prog. Nucl. Energy 85 (2015) 96-107. https://doi.org/10.1016/j.pnucene.2015.06.014
- X. Lyu, M. Peng, G. Xia, Analysis of start-up and long-term operation characteristics of passive residual heat removal system, Ann. Nucl. Energy 130 (2019) 69-81. https://doi.org/10.1016/j.anucene.2019.02.033
- J. Sun, C. Lu, Z. Mi, X. Cao, M. Ding, Experimental research on characteristics of condensation induced water hammer in natural circulation systems, Int. Commun. Heat Mass Tran. (2020) 114.
- M.H. Chun, S.O. Yu, A Parametric Study and a Guide Chart to Avoid Condensation-Induced Water Hammer in a Horizontal Pipe, 201, 2000, pp. 239-257. https://doi.org/10.1016/S0029-5493(00)00280-6
- I.F. Barna, A.R. Imre, G. Baranyai, G. Ezsol, Experimental and theoretical study of steam condensation induced water hammer phenomena, Nucl. Eng. Des. 240 (2010) 146-150. https://doi.org/10.1016/j.nucengdes.2009.09.027
- X. Hou, Z. Sun, J. Su, G. Fan, An investigation on flashing instability induced water hammer in an open natural circulation system, Prog. Nucl. Energy 93 (2016) 418-430. https://doi.org/10.1016/j.pnucene.2016.09.015
- Guan Heng Yeoh, Thermal hydraulic considerations of nuclear reactor systems: past, present and future challenges, Experimental and Computational Multiphase Flow 1 (2019) 3-27. https://doi.org/10.1007/s42757-019-0002-5
- P. Griffith, Screening Reactor Steam/water Piping Systems for Water Hammer, Massachusetts Institute of Technology, 1997.
- I.F. Barna, G. Ezsol, Steam condensation induced water hammer simulations for different pipelines, in: International Topical Meeting on Nuclear Thermal-hydraulics, Shanghai, China, 2010.
- I.F. Barna, G. Ezsol, Multiple condensation induced water hammer events, experiments and theoretical investigations, Kerntechnik 76 (2011) 231-236. https://doi.org/10.3139/124.110154
- C. Urban, M. Schluter, Investigations on the stochastic nature of condensation induced water hammer, Int. J. Multiphas. Flow 67 (2014) 1-9.
- P. Datta, A. Chakravarty, K. Ghosh, A. Mukhopadhyay, S. Sen, A. Dutta, P. Goyal, I. Thangamani, Modeling and analysis of condensation induced water hammer, Numer. Heat Tran., Part A: Applications 74 (2018) 975-1000. https://doi.org/10.1080/10407782.2018.1505094
- S.C. Ceuca, D. Laurinavicius, Experimental and numerical investigations on the direct contact condensation phenomenon in horizontal flow channels and its implications in nuclear safety, Kerntechnik 81 (2016) 504-511. https://doi.org/10.3139/124.110729
- L.T. Wang, X.Y. Yue, D.T. Chong, W.X. Chen, J.J. Yan, Experimental investigation on the phenomenon of steam condensation induced water hammer in a horizontal pipe, Exp. Therm. Fluid Sci. 91 (2018) 451-458. https://doi.org/10.1016/j.expthermflusci.2017.10.036
- S. Milivojevic, V.D. Stevanovic, B. Maslovaric, Condensation induced water hammer: numerical prediction, J. Fluid Struct. 50 (2014) 416-436. https://doi.org/10.1016/j.jfluidstructs.2014.07.003
- P. Datta, A. Chakravarty, K. Ghosh, A. Mukhopadhyay, S. Sen, Modeling of steam-water direct contact condensation using volume of fluid approach, Numer. Heat Tran., Part A: Applications 73 (2018) 17-33. https://doi.org/10.1080/10407782.2017.1420308
- I.F. Barna, M.A. Pocsai, A. Guba, A.R. Imre, Theoretical study of steam condensation induced water hammer phenomena in horizontal pipelines, J Kerntechnik 80 (2015) 420-423. https://doi.org/10.3139/124.110537
- J.C. Sun, J. Deng, X. Ran, M. Ding, G.M. Fan, Experimental study on flow modes and transient characteristics in low-pressure equal-height-difference natural circulation system, Ann. Nucl. Energy 151 (2021).
- L. Strubelj, G. Ezsol, I. Tiselj, Direct contact condensation induced transition from stratified to slug flow, Nucl. Eng. Des. 240 (2010) 266-274. https://doi.org/10.1016/j.nucengdes.2008.12.004
- P. Datta, A. Chakravarty, K. Ghosh, A. Mukhopadhyay, S. Sen, A. Dutta, P. Goyal, A numerical analysis on the effect of inlet parameters for condensation induced water hammer, Nucl. Eng. Des. 304 (2016) 50-62. https://doi.org/10.1016/j.nucengdes.2016.04.035
- J.M. Mandhane, G.A. Gregory, K. Aziz, A flow pattern map for gas-liquid flow in horizontal pipes, J International Journal of Multiphase Flow 1 (1974) 537-553. https://doi.org/10.1016/0301-9322(74)90006-8
- P. Sassi, J. Pallares, Y. Stiriba, Visualization and measurement of two-phase flows in horizontal pipelines, Experimental and Computational Multiphase Flow 2 (2020) 41-51. https://doi.org/10.1007/s42757-019-0022-1
- J. Hammack, D. Henderson, P. Guyenne, Y. Ming, Solitary-wave Collisions, in: Advances in Engineering Mechanics - Reflections and Outlooks - in Honor of Theodore Y.-T. Wu, Vancouver, BC CANADA, 2005.