DOI QR코드

DOI QR Code

Evaluation of photon radiation attenuation and buildup factors for energy absorption and exposure in some soils using EPICS2017 library

  • Hila, F.C. (Materials Science and Engineering Program, College of Engineering, University of the Philippines Diliman) ;
  • Javier-Hila, A.M.V. (Department of Science and Technology - Philippine Nuclear Research Institute) ;
  • Sayyed, M.I. (Department of Nuclear Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman bin Faisal University (IAU)) ;
  • Asuncion-Astronomo, A. (Department of Science and Technology - Philippine Nuclear Research Institute) ;
  • Dicen, G.P. (Department of Science and Technology - Philippine Nuclear Research Institute) ;
  • Jecong, J.F.M. (Department of Science and Technology - Philippine Nuclear Research Institute) ;
  • Guillermo, N.R.D. (Department of Science and Technology - Philippine Nuclear Research Institute) ;
  • Amorsolo, A.V. Jr. (Department of Mining, Metallurgical and Materials Engineering, College of Engineering, University of the Philippines Diliman)
  • Received : 2020.11.30
  • Accepted : 2021.05.23
  • Published : 2021.11.25

Abstract

In this paper, the EPICS2017 photoatomic database was used to evaluate the photon mass attenuation coefficients and buildup factors of soils collected at different depths in the Philippine islands. The extraction and interpolation of the library was accomplished at the recommended linear-linear scales to obtain the incoherent and total cross section and mass attenuation coefficient. The buildup factors were evaluated using the G-P fitting method in ANSI/ANS-6.4.3. An agreement was achieved between XCOM, MCNP5, and EPICS2017 for the calculated mass attenuation coefficient values. The buildup factors were reported at several penetration depths within the standard energy grid. The highest values of both buildup factor classifications were found in the energy range between 100 and 400 keV where incoherent scattering interaction probabilities are predominant, and least at the region of predominant photoionization events. The buildup factors were examined as a function of different soil silica contents. The soil samples with larger silica concentrations were found to have higher buildup factor values and hence lower shielding characteristics, while conversely, those with the least silica contents have increased shielding characteristics brought by the increased proportions of the abundant heavier oxides.

Keywords

References

  1. J.D. Brock, M. Sutton, Materials science and X-ray techniques, Mater. Today 11 (2008) 52-55. https://doi.org/10.1016/S1369-7021(08)70239-6
  2. G.E.P. Lopez, J.F. Madrid, L.V. Abad, Chromium and cadmium adsorption on radiation-grafted polypropylene copolymers: regeneration, kinetics, and continuous fixed bed column studies, SN Appl. Sci. 2 (3) (2020).
  3. A. Madhu, B. Eraiah, N. Srinatha, Gamma irradiation effects on the structural, thermal and optical properties of samarium doped lanthanum-lead- borotellurite glasses, J. Lumin. 221 (2020) 117080. https://doi.org/10.1016/j.jlumin.2020.117080
  4. S. Punia, S.B. Dhull, P. Kunner, S. Rohilla, Effect of γ-radiation on physicochemical, morphological and thermal characteristics of lotus seed (Nelumbo nucifera) starch, Int. J. Biol. Macromol. 157 (2020) 584-590. https://doi.org/10.1016/j.ijbiomac.2020.04.181
  5. D. Toyen, E. Wimolmala, N. Sombatsompop, T. Markpin, K. Saenboonruang, Sm2O3/UHMWPE composites for radiation shielding applications: mechanical and dielectric properties under gamma irradiation and thermal neutron shielding, Radiat. Phys. Chem. 164 (2019) 108366. https://doi.org/10.1016/j.radphyschem.2019.108366
  6. C. Tranquilan-Aranilla, B.J.D. Barba, L.S. Relleve, L.V. Abad, In vivo safety evaluation of granules and dressing hemostatic agents from radiation processed polymeric materials, Philipp. J. Sci. 149 (S1) (2020) 15-26.
  7. C. Von Sonntag, Free-Radical-Induced DNA Damage and its Repair: A Chemical Perspective, Springer-Verlag, Berlin Heidelberg, 2006.
  8. L.A. Escalera-Velasco, J.R. Molina-Contreras, C.G. Hernandez-Murillo, H.A. De Leon-Martinez, H.R. Vega-Carrillo, J.A. Rodriguez-Rodriguez, I.A. Lopez-Salas, Shielding behavior of artisanal bricks against ionizing photons, Appl. Radiat. Isot. 161 (2020).
  9. E. Kavaz, H.O. Tekin, N.Y. Yorgun, O.F. Ozdemir, M.I. Sayyed, Structural and nuclear radiation shielding properties of bauxite ore doped lithium borate glasses: experimental and Monte Carlo study, Radiat. Phys. Chem. 162 (2019) 187-193. https://doi.org/10.1016/j.radphyschem.2019.05.019
  10. M.I. Sayyed, K.M. Kaky, M.H.A. Mhareb, A.H. Abdalsalam, N. Almousa, G. Shkoukani, M.A. Bourham, Borate multicomponent of bismuth rich glasses for gamma radiation shielding application, Radiat. Phys. Chem. 161 (2019a) 77-82. https://doi.org/10.1016/j.radphyschem.2019.04.005
  11. D.K. Gaikwad, M.I. Sayyed, S.S. Obaid, S.A.M. Issa, P.P. Pawar, Gamma ray shielding properties of TeO2-ZnF2-As2O3-Sm2O3 glasses, J. Alloys Compd. 765 (2018) 451-458. https://doi.org/10.1016/j.jallcom.2018.06.240
  12. D.K. Gaikwad, M.I. Sayyed, S.N. Botewad, S.S. Obaid, Z.Y. Khattari, U.P. Gawai, F. Afaneh, M.D. Shirshat, P.P. Pawar, Physical, structural, optical investigation and shielding features of tungsten bismuth tellurite based glasses, J. NonCryst. Solids 503-504 (2019) 158-168. https://doi.org/10.1016/j.jnoncrysol.2018.09.038
  13. F. Akman, V. Turan, M.I. Sayyed, F. Akdemir, M.R. Kacal, R. Durak, M.H.M. Zaid, Comprehensive study on evaluation of shielding parameters of selected soils by gamma and X-rays transmission in the range 13.94-88.04 keV using WinXCom and FFAST programs, Results Phys 15 (2019) 102751. https://doi.org/10.1016/j.rinp.2019.102751
  14. G.S. Mudahar, H.S. Sahota, Soil: a radiation shielding material, Int. J. Radiat. Appl. Instrum. Part A 39 (1) (1988a) 21-24. https://doi.org/10.1016/0883-2889(88)90087-1
  15. G.S. Mudahar, H.S. Sahota, Effective atomic number studies in different soils for total photon interaction in the energy region 10-5000 keV, Int. J. Radiat. Appl. Instrum. Part A 39 (12) (1988b) 1251-1254. https://doi.org/10.1016/0883-2889(88)90108-6
  16. M.S. Al-Masri, M. Hasan, A. Al-Hamwi, Y. Amin, A.W. Doubal, Mass attenuation coefficients of soil and sediment samples using gamma energies from 46.5 to 1332 keV, J. Environ. Radioact. 116 (2013) 28-33. https://doi.org/10.1016/j.jenvrad.2012.09.008
  17. J.C. Costa, J.A.R. Borges, L.F. Pires, Soil bulk density evaluated by gamma-ray attenuation: analysis of system geometry, Soil Tillage Res. 129 (2013) 23-31. https://doi.org/10.1016/j.still.2013.01.003
  18. E.A. Elias, O.O.S. Bacchi, K. Reichardt, Alternative soil particle-size analysis by gamma-ray attenuation, Soil Tillage Res. 52 (1-2) (1999) 121-123. https://doi.org/10.1016/S0167-1987(99)00070-7
  19. E.A. Elias, A simplified analytical procedure for soil particle-size analysis by gamma-ray attenuation, Comput. Electron. Agric. 42 (3) (2004) 181-184. https://doi.org/10.1016/j.compag.2003.08.001
  20. L.F. Pires, Soil analysis using nuclear techniques: a literature review of the gamma ray attenuation method, Soil Tillage Res. 184 (2018) 216-234. https://doi.org/10.1016/j.still.2018.07.015
  21. M.N. Alam, M.M.H. Miah, M.I. Chowdhury, M. Kamal, S. Ghose, R. Rahman, Attenuation coefficients of soils and some building materials of Bangladesh in the energy range 276-1332 keV, Appl. Radiat. Isot. 54 (6) (2001) 973-976. https://doi.org/10.1016/S0969-8043(00)00354-7
  22. C.R. Appoloni, E.A. Rios, Mass attenuation coefficients of Brazilian soils in the range 10-1450 keV, Appl. Radiat. Isot. 45 (3) (1994) 287-291. https://doi.org/10.1016/0969-8043(94)90041-8
  23. M.E. Medhat, N. Demir, U. Akar Tarim, O. Gurler, Calculation of gamma-ray mass attenuation coefficients of some Egyptian soil samples using Monte Carlo methods, Radiat. Eff. Defect Solid 169 (8) (2014) 706-714. https://doi.org/10.1080/10420150.2014.918129
  24. M.E. Medhat, Comprehensive study of photon attenuation through different construction matters by Monte Carlo simulation, Radiat. Phys. Chem. 107 (2015) 65-74. https://doi.org/10.1016/j.radphyschem.2014.09.005
  25. M.I. Sayyed, F. Akman, V. Turan, A. Araz, Evaluation of radiation absorption capacity of some soil samples, Radiochim. Acta 107 (1) (2019b) 83-93. https://doi.org/10.1515/ract-2018-2996
  26. A.H. Taqi, Q.A.M. Al Nuaimy, G.A. Karem, Study of the properties of soil in Kirkuk, Iraq, J. Radiat. Res. Appl. Sci. 9 (3) (2016) 259-265. https://doi.org/10.1016/j.jrras.2016.02.006
  27. Q. Zhang, Y. Guo, H. Bai, Y. Gu, Y. Xu, J. Zhao, L. Ge, Y. Peng, J. Liu, Determination of effective atomic numbers and mass attenuation coefficients of samples using in-situ energy-dispersive X-ray fluorescence analysis, X Ray Spectrom. 47 (1) (2017) 4-10.
  28. M.J. Berger, J.H. Hubbell, XCOM: Photon Cross Sections on a Personal Computer. NBSIR 87-3597, National Bureau of Standards, Gaithersburg, MD, 1987, 1987.
  29. M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, K. Olsen, XCOM: Photon Cross Section Database (Version 1.5), National Institute of Standards and Technology, Gaithersburg, MD, 2010. http://physics.nist.gov/xcom [2020, October 24].
  30. R.A.R. Bantan, M.I. Sayyed, K.A. Mahmoud, Y. Al-Hadeethi, Application of experimental measurements, Monte Carlo simulation and theoretical calculation to estimate the gamma ray shielding capacity of various natural rocks, Prog. Nucl. Energy 126 (2020) 103405. https://doi.org/10.1016/j.pnucene.2020.103405
  31. N. Demir, U.A. Tarim, M.A. Popovici, Z.N. Demirci, O. Gurler, I. Akkurt, Investigation of mass attenuation coefficients of water, concrete and bakelite at different energies using the FLUKA Monte Carlo code, J. Radioanal. Nucl. Chem. 298 (2) (2013) 1303-1307. https://doi.org/10.1007/s10967-013-2494-y
  32. M.G. Dong, R. El-Mallawany, M.I. Sayyed, H.O. Tekin, Shielding properties of 80TeO2-5TiO2-(15-x) WO3-xAnOm glasses using WinXCom and MCNP5 code, Radiat. Phys. Chem. 141 (2017) 172-178. https://doi.org/10.1016/j.radphyschem.2017.07.006
  33. F.C. Hila, G.P. Dicen, A.M.V. Javier-Hila, A. Asuncion-Astronomo, N.R.D. Guillermo, R.V. Rallos, I.A. Navarrete, A.V. Amorsolo JR., Determination of photon shielding parameters for soils in mangrove forests, Philipp. J. Sci. 150 (1) (2021) 245-256.
  34. V.P. Singh, S.P. Shirmardi, M.E. Medhat, N.M. Badiger, Determination of mass attenuation coefficient for some polymers using Monte Carlo simulation, Vacuum 119 (2015) 284-288. https://doi.org/10.1016/j.vacuum.2015.06.006
  35. B.T. Tonguc, H. Arslan, M.S. Al-Buriahi, Studies on mass attenuation coefficients, effective atomic numbers and electron densities for some biomolecules, Radiat. Phys. Chem. 153 (2018) 86-91. https://doi.org/10.1016/j.radphyschem.2018.08.025
  36. S.M. Vahabi, M. Bahreinipour, M. Shamsaie Zafarghandi, Determining the mass attenuation coefficients for some polymers using MCNP code: a comparison study, Vacuum 136 (2017) 73-76. https://doi.org/10.1016/j.vacuum.2016.11.011
  37. S.S. Obaid, M.I. Sayyed, D.K. Gaikwad, H.O. Tekin, Y. Elmahroug, P.P. Pawar, Photon attenuation coefficients of different rock samples using MCNPX, Geant4 simulation codes and experimental results: a comparison study, Radiat. Eff. Defect Solid 173 (11-12) (2018) 900-914. https://doi.org/10.1080/10420150.2018.1505890
  38. S.S. Obaid, M.I. Sayyed, D.K. Gaikwad, P.P. Pawar, Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications, Radiat. Phys. Chem. 148 (2018) 86-94. https://doi.org/10.1016/j.radphyschem.2018.02.026
  39. M.I. Sayyed, M.Y. Alzaatreh, M.G. Dong, M.H.M. Zaid, K.A. Matori, H.O. Tekin, A comprehensive study of the energy absorption and exposure buildup factors of different bricks for gamma-rays shielding, Results Phys 7 (2017) 2528-2533. https://doi.org/10.1016/j.rinp.2017.07.028
  40. V.P. Singh, N.M. Badiger, A comprehensive study on gamma-ray exposure build-up factors and fast neutron removal cross sections of fly-ash bricks, J. Ceram. 2013 (2013) 1-13.
  41. H.R. Vega-Carrillo, K.A. Guzman-Garcia, J.A. Rodriguez-Rodriguez, C.A. Juarez-Alvarado, V.P. Singh, H.A. De Leon-Martinez, Photon and neutron shielding features of quarry tuff, Ann. Nucl. Energy 112 (2018) 411-417. https://doi.org/10.1016/j.anucene.2017.10.042
  42. S.S. Obaid, D.K. Gaikwad, P.P. Pawar, Determination of gamma ray shielding parameters of rocks and concrete, Radiat. Phys. Chem. 144 (2018) 356-360. https://doi.org/10.1016/j.radphyschem.2017.09.022
  43. Y. Harima, An approximation of gamma-ray buildup factors by modified geometrical progression, Nucl. Sci. Eng. 83 (2) (1983) 299-309. https://doi.org/10.13182/NSE83-A18222
  44. Y. Harima, H. Hirayama, Detailed behavior of exposure buildup factor in stratified shields for plane-normal and point isotropic sources, including the effects of bremsstrahlung and fluorescent radiation, Nucl. Sci. Eng. 113 (4) (1993) 367-378. https://doi.org/10.13182/NSE92-52
  45. Y. Harima, Y. Sakamoto, S. Tanaka, M. Kawai, Validity of the geometric-progression formula in approximating gamma-ray buildup factors, Nucl. Sci. Eng. 94 (1) (1986) 24-35. https://doi.org/10.13182/nse86-a17113
  46. D.E. Cullen, A Survey of Photon Cross Section Data for Use in EPICS2017, IAEANDS-225, rev.1, 2018.
  47. D.A. Brown, M.B. Chadwick, R. Capote, A.C. Kahler, A. Trkov, M.W. Herman, Y. Zhu, ENDF/B-VIII.0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data, Nucl. Data Sheets 148 (2018) 1-142. https://doi.org/10.1016/j.nds.2018.02.001
  48. Ansi/Ans-6.4.3, Gamma Ray Attenuation Coefficient and Buildup Factors for Engineering Materials, American Nuclear Society La Grange Park, IL, 1991.
  49. I.O. Olarinoye, R.I. Odiaga, S. Paul, EXABCal: a program for calculating photon exposure and energy absorption buildup factors, Heliyon 5 (7) (2019), e02017. https://doi.org/10.1016/j.heliyon.2019.e02017
  50. G.P. Dicen, I.A. Navarrete, R.V. Rallos, S.G. Salmo, M.C.A. Garcia, The role of reactive iron in long-term carbon sequestration in mangrove sediments, J. Soils Sediments 19 (1) (2019) 501-510. https://doi.org/10.1007/s11368-018-2051-y
  51. D.E. Cullen, EPICS2017: April 2019 Status Report, IAEA-NDS-228, rev.1, 2018.
  52. A. Trkov, M. Herman, D.A. Brown, ENDF-6 Formats Manual: Data Formats and Procedures for the Evaluated Nuclear Data Files, ENDF/B-VI and ENDF/B-VII, CSEWG Document ENDF-102, Report BNL-90365-2009 Rev. 2, Brookhaven National Laboratory, 2009.
  53. F.C. Hila, A.V. Amorsolo Jr., A.M.V. Javier-Hila, N.R.D. Guillermo, A simple spreadsheet program for calculating mass attenuation coefficients and shielding parameters based on EPICS2017 and EPDL97 photoatomic libraries, Radiat. Phys. Chem. 177 (2020).
  54. M. Kurudirek, B. Dogan, Y. Ozdemir, A.C. Moreira, C.R. Appoloni, Analysis of some Earth, Moon and Mars samples in terms of gamma ray energy absorption buildup factors: penetration depth, weight fraction of constituent elements and photon energy dependence, Radiat. Phys. Chem. 80 (3) (2011) 354-364. https://doi.org/10.1016/j.radphyschem.2010.10.001
  55. K.S. Mann, T. Korkut, Gamma-ray buildup factors study for deep penetration in some silicates, Ann. Nucl. Energy 51 (2013) 81-93. https://doi.org/10.1016/j.anucene.2012.08.024
  56. U. Akar Tarim, O. Gurler, E.N. Ozmutlu, S. Yalcin, Monte Carlo calculations for gamma-ray mass attenuation coefficients of some soil samples, Ann. Nucl. Energy 58 (2013) 198-201. https://doi.org/10.1016/j.anucene.2013.03.021
  57. M.E. Medhat, Application of gamma-ray transmission method for study the properties of cultivated soil, Ann. Nucl. Energy 40 (1) (2012) 53-59. https://doi.org/10.1016/j.anucene.2011.10.010