
J. Chosun Natural Sci.

Vol. 14, No. 3 (2021) pp. 139 − 146

https://doi.org/10.13160/ricns.2021.14.3.139

− 139 −

A Classification of the Torsion-free Extensions

Won-Sok Yoo
†

Department of Applied Mathematics, Kumoh National Institute of Technology, Kumi, Korea

Abstract

The purpose of this paper is to classify the torsion-free extensions 1→Z
3
→Π→ZΦ→1 with injective abstract

kernel φ : ZΦ→Aut(Z3). From this classification, we handle the sufficient conditions so as to classify the

crystallographic groups of .
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1. Introduction

Let X be a complete connected, simply connected

Riemannian manifold, and let G be a group of isom-

etries of X. A pair (X, G) is called a geometry in the

sense of Thurston[1,2] if G acts transitively on X and

G contains a discrete subgroup I with the coset space

Γ\X of finite volume.

Let G be a connected, simply connected solvable

Lie group and let C be any maximal compact sub-

group of Aff(G). A discrete cocompact subgroup Π

of G×G is called a crystallographic group of G. The

coset space Π \G is an infra-solvmanifold of G, when

Π is a Bieberbach group (i.e., a torsion-free crystal-

lographic group) of G. The maximal compact sub-

group C can be chosen so that G×C is equal to

Isom(G). Therefore, the Bieberbach groups of G are

exactly the fundamental groups of compact infra-

solvmanifolds of G. Consequently, a closed manifold

has a (X, G)-geometry if and only if it is an infra-

solvmanifold of G. The crystallographic groups of

 and  are classified in [3] and [4], respec-

tively. All the closed four-manifolds with -geom-

etry were studied in [5].

There are infinite but countable number of the Lie

groups  that admit a lattice. Such Lie groups are

denoted by . In [6], we showed that  has

a unique lattice up to isomorphism and studied the

necessary conditions for the crystallographic groups

of .

In this paper, we classify the torsion-free exten-

sions 1→Z
3
→Π→ZΦ→1 with injective abstract ker-

nel φ : ZΦ→Aut(Z3), and handle the classification

problem to classify the crystallographic groups of

.

2. Extensions 1→Z
3
→Π→ZΦ→1

In this section, we achieve our classification prob-

lem by classifying the torsion-free extensions

1→Z
3
→Π→ZΦ→1 with injective abstract kernel φ :

ZΦ→Aut(Z3), see for example [5, Lemma 1.2].

2.1. Case Φ ={1}. If Φ ={1} then Π = Γ is a lattice

of .

2.2. Case Φ = Z2 From [6], we may assume that
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Γ = =Z3
×Am,n

Z

where s = lnα2 and the vectors xi are given in (3-5)

of [6], i.e.,

x1= , x2= , x3= .

Consider Φ = <X> Choose a lift  of X

where t = 0 or , and r ∈R
3  Then Π = <Γ, (r, t, X)>.

Let t = 0. This is exactly the case where ZΦ= <(s, I),

(0, X)> = Z×Z2. Since Z
3 must be a normal subgroup

of Π, we have

(r, 0, X)(xi, 0, I)(r, 0, X)
−1= (X(xi), 0, I)∈Z

3.

Hence,

X(xi) = p1ix1+p2ix2+p3ix3 (i = 1, 2, 3) (2-1)

for some integers pij This means that

[x1 x2 x3]
−1 X[x1 x2 x3] = [pij]∈GL(3, Z). (2-2)

A direct computation of (2-2) shows that

By (2-1), we have X(x1) = p11x1+p21x2+p31x3 or

From the middle entries above, we have

0 = (p11−1)(α2+α3)+p21(α3+α1)+p31(α1+α2)

0 =

where the second identity is obtained by a direct

computation. In conclusion, when Φ = <X>, t cannot

be 0. By the similar argument as above, we can show

that unless Φ = <−I>, t cannot be 0.

Now consider Φ = <−I> with t = 0 In this case

(r, 0, −I)(xi, 0, I)(r, 0, −I)
−1

 = (−I(xi), 0, I) = (−xi, 0, I)∈Z
3.

Moreover, (r, 0, −I)2= (r−I(r), 0, I) = (0, 0, I).

Consequently,

Π = <Γ, (r, 0, −I)> = Γ × Z2.

It is clear that the groups <Γ, (r, 0, −I)> and <Γ,

(r', 0, −I)> with any r, r' ∈R
3 are isomorphic to each

other.

Let  Then ZΦ=  and so Π is nec-

essarily torsion-free. The abstract kernel φ : ZΦ→

Aut(Z3) = GL(3, Z) with respect to the ordered gen-

erators {x1, x2, x3} of Z
3 is determined by the image

 Note that ,  and

.

Thus, we must have that ∈GL(3, Z)  is a

square root of Am,n (a matrix whose square is Am,n)

with eigenvalues , , and . We denote

such an integer matrix by . Let

be the characteristic equation of  Then we have

,
(2-3)

With (k, l) satisfying (2-3), we form the group

.

This group fits the following diagram (2-4). (see

(4-1) in [6]).

x1 0,( ) x2 0,( ) x3 0,( ) 0 s,( ), , ,〈 〉

α2α3

α2 α3+( )–

1

α3α1

α3 α1+( )–

1

α1α2

α1 α2+( )–

1

r t X, ,( ) Π∈
s
2
---

4nα2α3

α3 α1–( ) α1 α2–( )
---------------------------------------- 0≠

t
s
2
---=

s
2
--- X,⎝ ⎠
⎛ ⎞〈 〉 Z≅

φ s
2
--- X,⎝ ⎠
⎛ ⎞ s

2
--- X,⎝ ⎠
⎛ ⎞

2

s I,( )= φ s( ) Am n,=

ϕ' s
2
--- X,⎝ ⎠
⎛ ⎞ ϕ s

2
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⎛ ⎞X

α1– 0 0

0 α2 0

0 0 α3

= =

φ s
2
--- X,⎝ ⎠
⎛ ⎞
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AX

x
3

kx
2

– lx 1+ + 0=
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m k
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n l
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Π Z
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– n+
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2α3α1

α1 α2–( ) α2 α3–( )
----------------------------------------

α3
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----------------------------------------

=

α2α3–
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1
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1
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(2-4)

In the above argument, if X is replaced with Y, Z,

or −I, then

•  should be replaced with ,  or 

and

• the eigenvalues , ,  of  should

be replaced with the eigenvalues , ,

 of , , ,  of  or ,

,  of .

Let  be the characteristic equation

of , ,  or  Then the pair (k, l) satisfies

(2-3). With (k, l) satisfying (2-3), the group

or

fits the diagram (2-4).

In a similar way, we can replace X a generator of

Φ with another generator −X, −Y,  or −Z In this case,

the characteristic equation of the corresponding

square matrix ,  or  is

where the pair (k, l) satisfies

(2-5)

For pairs (k, l) satisfying (2-5), we can form the

group

or

fitting the diagram (2-4).

Now we will show that every Am,n cannot admit a

square root. First, we remark by (2-3) and (2-5) that

both m and k and n and l share the even-odd parity.

Theorem 2.1. The integer matrix Am,n cannot admit

a square root if one of the following holds:

(1) m is of the form 4M and n is odd or of the

form 4N+2

(2) m is of the form 4M+1 and n is odd or of the

form 4N

(3) m is of the form 4M+2 and n is even or of the

form 4N+3

(4) m is of the form 4M+3 and n is even or of the

form 4N+1

If Am,n does not have a square root, then  has

no Bieberbach group with holonomy group Z2.

Proof. First, let m = 4M and n is odd. Then k = 2K

and l = 2L + 1 for some integers R and L. By sub-

stitution to (2-3), we have

4M = (2K)2− 2(2L + 1) = 4(K2
− L − 1) + 2,

which is impossible.

Let m = 4M and n = 4N + 2 Then k = 2K and l = 2L

for some integers R and L By substitution to (2-3)

and (2-5), we have

4N + 2= (2L)2± 2(2K) = 4(L2± K),

which is impossible.

The remaining cases can be considered in the same

way. We can easily show that (2-3) and (2-5) are not

satisfied in every remaining case. Hence Am,n cannot

admit a square root.                              □

AX AY AZ AI–

α1– α2 α3 AX
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The following example shows that the complemen-

tary case of Theorem 2.1 does not guarantee the exis-

tence of a square root.

Example 2.2. Consider (m, n) = (12, 8) This inte-

ger pair satisfies (3-4) in [6]. Assume that there exists

an integer pair (k, l) satisfying the equations (2-3).

Then k = 2K and l = 2L for some integers R and L

and by substitution we get

3 = K2
− L, 2 = L2+ K

which yield . However, by a sim-

ple inspection we can see that this equation has no

integer root. Hence A12,8 does not admit a square root,

and  has no Bieberbach group with holonomy

group Z2.

Now, we will examine the complementary case of

Theorem 2.1 in detail, and obtain the “existence”

conditions of a square root of Am,n We can immedi-

ately see that each case produces an hyperbola equa-

tion.

2.2.1. Case 1: m = 4M, n = 4N. With k = 2K and

l = 2L we have 4M = (2K)2− 2(2L) = 4(K2
− L)  and

4N = (2L)2+ 2(2K) = 4(L2+ K) and hence (2-3) is

equivalent to

M = K2
− L,

N = L2
− K.

Thus we have

(K−1)K−L(L+1) =M−N,

so M−N = 2a is an even integer, and hence we have

(K+L)(K−L−1) = 2a

If K+L = p, K−L−1 = q with 2a = pq (a multiple of

two integers), then 2K−1 = p + q  and 2L+1 = p − q

so one of p and q is odd and the other is even. In

this case, , . Hence

,

.

In conclusion, we have:

Theorem 2.3. Let m = 4M and n = 4N be given

integers.

(1) If M − N is odd or is a product of even integers,

then the equations (2-3) have no integer solution (k, l)

(2) If M − N = pq is a product of an even integer

and an odd integer such that

,

,

then (k, l) = (p + q + 1, p − q − 1) is an integer solu-

tion of the equations (2-3).

Example 2.4.

(1) Given (m, n) = (12, 8) as in Example 2.2, M −

N = 3−2 = 1 is odd. By Theorem 2.3, the equations

(2-3) with (m, n) = (12, 8) have no integer solution

(k, l)

 (2) Consider (m, n) = (20, 12) Then

 M −N = 5−3 = 2 = pq.

Taking p = 1 and p = 2 we can see that

and

hold. Notice that the other choices for (p, q) do not

satisfy the above identities. Hence by Theorem 2.3,

(k, l) = (4, −2) is an integer solution of the equations

(2-3).

(3) Consider (m, n) = (52, 20) Then M = 13, N = 5

and M −N = 8 Taking p = −1 and q = −8 we can see

that

and

hold. By Theorem 2.3, (k, l) = (−8, 6) is an integer

K
4

6K
2

– K 7+ + 0=
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4
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p q 1+ +
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4
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4
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4
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4
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N
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solution of the equations (2-3).

2.2.2. Case 2: m = 4M + 1, n = 4N + 2. With k = 2K

+ 1 and l = 2L in (2-3), we have

M = K2+ K − L, N = L2
− K

and so an hyperbola equation

.

Hence

.

If ,  with

 then  and 

Remark that  or (3, 1) mod 4. Hence

, .

In conclusion, we have:

Theorem 2.5. Let m = 4M + 1 and n = 4N + 2 be

given integers. Let  be a product of

two odd integers such that

, .

Then (k, l) =  is an integer solu-

tion of the equations (2-3).

Example 2.6. Consider (m, n) = (9, 6) Then M = 2,

N = 1 and M −N = 1 and  With p = 3

and q = 1 we can see that

 and  hold.

By Theorem 2.5, (k, l) = (3, 0) is an integer solu-

tion of the equations (2-3).

2.2.3.Case 3: m = 4M + 2, n = 4N + 1 With k = 2K

and l = 2L + 1 in (2-3), we have

, 

and so an hyperbola equation

.

Hence

.

If ,  with

 then  and

 Remark that  or (3, 3) mod

4. Hence

, .

In conclusion, we have:

Theorem 2.7. Let m = 4M + 2 and m = 4M + 1 be

given integers. Let  be a product of

two odd integers such that

, .

Then (k, l) =  is an integer

solution of the equations (2-3).

Example 2.8. Consider (m, n) = (6, 5) Then M = 1,

N = 1 and  Taking p = 1 and q = 1 we

can see that

 and  hold.

By Theorem 2.5, (k, l) = (2, −1) is an integer solu-

tion of the equations (2-3).

2.2.4. Case 4: m = 4M + 3, n = 4N + 3. With

k = 2K + 1 and l = 2L − 1 in (2-3), we have

M = K2+ K − L, N = L2
− L + K

and so an hyperbola equation

.

If ,  with  (a multiple

of two integers), then  and  so p

and q share the even-odd parity. In this case,

, . Hence

, .

In conclusion, we have:

K
2

L
1

2
---+⎝ ⎠

⎛ ⎞
2

M= = N–
1

4
---–

2K( )2 2L 1+( )2– 4 M N–( ) 1–=

2K 2L 1+ + p= 2K 2L– 1– q=

4 M N–( ) 1– pq= 4K p q+= 4L p q– 2–=

p q,( ) 1 3,( )≡
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p q+
4

----------⎝ ⎠
⎛ ⎞

2
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2
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----------+= N
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-------------+= N
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M
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4
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2
2q 1+

4
-------------+= N

p q–
4

----------⎝ ⎠
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2

=
q 1+

2
----------+

K
2

L
2

– M N–=

K L+ p= K L– q= M N– pq=

2K p q+= 2L p q–=

K
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2

----------= L
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2

----------=

M
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2
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2

q+= N
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Theorem 2.9. Let m = 4M + 3 and n = 4N + 3 be

given integers.

 (1) If  is a product of two even integers

or a product of two odd integers such that

, 

then (k, l) =  is an integer solution

of the equations (2-3).

(2) If M − N cannot be expressed as a product of

two even integers or as a product of two odd inte-

gers, then the equations (2-3) have no integer solu-

tion (k, l).

Example 2.10.

(1) Consider (m, n) = (11, 7) Then M = 2 and N = 1,

hence M − N = 1 = pq, p = q = ±1. With p = 1 and q = 1

we can see that

 and  hold.

By Theorem 2.9, (k, l) = (3, −1) is an integer solu-

tion of the equations (2-3).

(2) Consider (m, n) = (19, 11) Then M = 4 and

N = 2 hence M − N = 2 By Theorem 2.9, the equations

(2-3) have no integer solution (k, l).

The following theorem states about the “unique-

ness” of square root of Am,n whenever it exists.

Theorem 2.11.

(1) If the pair (k, l) satisfies the equations (2-3),

then (−k, l) satisfies the equations (2-5), and the vice

versa.

(2) If the pair (k, l) satisfies the equations (2-3),

then (k, l) is unique.

(3) If the pair (k, l) satisfies the equations (2-3),

then the associated equation  has 3

distinct roots.

(4) If β is a root of  then −β is

a root of 

Proof. The proofs of (1) and (4) are trivial.     □

For (2), assume that

, .

Then

, , (2-6)

hence  Assume further that  and

 Thus we obtain

.

If k + p = ±1 and  then by (2-6), ±2k − 1

= 4(l ± 2) a contradiction. If k + p = 2 and l + q = −2

then by (2-6), k = l + 2 hence m = k2− 2l = l2+ 2l + 4

and n = l2+ 2k = l2+ 2l + 4 a contradiction as m > n If

k + p = −2 and l + q = 2 then by (2-6), k = −1 hence

m = k2−2l = l2 - 2l = l2+ 2k = n a contradiction.

Hence (2) is proved.

Let B be the companion matrix of the equation

. By (2-3), B2 has the characteristic

equation . Thus B2 has 3 distinct

positive real eigenvalues. This implies that B has 3

distinct eigenvalues, which are roots of the equation

. This proves (3).

Remark 2.12. Suppose that (p, q) is a pair of inte-

gers satisfying a condition in Theorem 2.3, 2.5, 2.7

or 2.9. Then this pair must be unique, depending only

on (m, n) because of Theorem 2.11. (2).

Theorem 2.11 above says that for the given Lie

group  if there exists (k, l) satisfying (2-3) and

hence (2-5) then there is exactly one pair 

of two square roots of Am,n which is one of the fol-

lowing:

, 

, .

Each pair except  will give rise to one

Bieberbach group of  with trivial holonomy

group (i.e., a lattice of ), and two Bieberbach

groups of  with holonomy group Z2 For exam-

ple, if  then

,

, 

M N– pq=

M
p q+
2
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⎛ ⎞
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p q–
4

----------⎝ ⎠
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⎛ ⎞
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x
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Solm n,
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AI– AI,( )

Solm n,
4

Solm n,
4

Solm n,
4
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Γ Z
3

= A
m n,
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3
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ΠX Z
3 1

2
---Z⎝ ⎠
⎛ ⎞

AX

×≅ Π X– Z
3 1

2
---Z⎝ ⎠
⎛ ⎞

AX–

×≅
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with holonomy groups {1}, <X>, and <−X>, respec-

tively. When Am,n has a pair of square roots 

 has always a lattice, and has one Bieberbach

group

with holonomy group <−I> = {±I}. Since  has 3

distinct real eigenvalues, the associated group

is a lattice of  This is not a Bieberbach group

of  (with holonomy group Z2).

Example 2.13. If (m, n) = (6, 5) then it satisfies the

conditions (3-4) in [6] and (k, l) = (2, −1) satisfies the

equations (2-3), see Example 2.8. Take

, 

Note that A is conjugate to Am,n= A6.5. By a simple

observation, we can see that the characteristic equa-

tion  of  has eigenvalues ,

, and . This shows that  and

 has Bieberbach group Π Y with holonomy

group Z2 By (1) in Theorem 2.11, (k, l) = (−2, −1)

satisfies the equations (2-5). By (4) in Theorem 2.11,

the associated equation  has three

distinct roots , , and  This implies

 has Bieberbach group Π −Y with holonomy

group Z2 Finally, by (2) in Theorem 2.11, the Bie-

berbach groups Π Y and Π −Y of  are the only

Bieberbach groups with holonomy group Z2.

Example 2.14. For other examples, if (m, n) = (9,

6) then it satisfies the conditions (3-4) in [6] and (k,

l) = (3, 0) satisfies the equations (2-3), see Example

2.6. Hence we can see that  two Bieberbach

groups Π Z and Π −Z with holonomy group Z2.

If (m, n) = (37, 26) then it satisfies the conditions

(3-4) in [6] and (k, l) = (−5, −6) satisfies the equations

(2-3). Hence we can see that  two Bieberbach

groups Π X and Π −X with holonomy group Z2.

Example 2.15. Consider (m, n) = (52, 20) This pair

satisfies the conditions (3-4) in [6] and (k, l) = (−8,

6) satisfies the equations (2-3), see Example 2.4. The

associated equation  has 3 negative

roots, hence the equation  associ-

ated with (k, l) = (8, 6) has 3 positive roots. Conse-

quently,  has only one Bieberbach group

 with holonomy group {±I}.

The group  is a lattice of 

Theorem 2.16. The Lie group  has a unique,

up to isomorphism, crystallographic group with tor-

sion element and with holonomy group Z2.

<Γ, (0, 0, −I)> = Γ × Z2.

The Lie group  has a Bieberbach group with

holonomy group Z2 if and only if the simultaneous

equations (2-3) have a pair (k, l) of integer solution.

If this is the case, then  has two Bieberbach

groups, up to isomorphism,

, 

where U ∈{X, Y, Z}, or has one Bieberbach group,

up to isomorphism,

.

2.3. Case Φ =  or  Let Π be a crystallo-

graphic group of  fitting the diagram (2-4). Let

Φ ' be and index 2 subgroup of Φ ' By pulling back

the diagram (2-4) via the inclusion i : Φ '→Φ  we

obtain the following commutative diagram

where ΠΦ is a crystallographic group of  with

AI– AI,( )

Solm n,
4

Π I– Z
3 1

2
---Z⎝ ⎠
⎛ ⎞

AI–
×≅

AI

ΠI Z
3 1

2
---Z⎝ ⎠
⎛ ⎞

AI
×≅

Solk l,
4

Solm n,
4

A
0 0 1–

1 0 1

0 1 2

= A A( )
2

0 1 2–

0 1 1–

1 2– 5

= =

x
3

2x
2

– x– 1+ 0= A α1

α2– α3 A AY=

Sol9 6,

4

x
3

2x
2

x– 1–+ 0=

α1– α2 α3–

Sol6.5
4

Sol9 6,

4

Sol9 6,

4

Sol37 26,

4

x
3

8x
2

6x 1+ + + 0=

x
3

8x
2

– 6x 1–+ 0=

Sol52 20,

4

Π I– Z
3 1

2
---Z⎝ ⎠
⎛ ⎞

AI–
×≅

ΠI Z
3 1

2
---Z⎝ ⎠
⎛ ⎞

AI
×≅ Sol8 6,

4

Solm n,
4

Solm n,
4

Solm n,
4

Z
3 1

2
---Z⎝ ⎠
⎛ ⎞

AU

× Z
3 1

2
---Z⎝ ⎠
⎛ ⎞

AU–

×

Z
3 1

2
---Z⎝ ⎠
⎛ ⎞

AI–
×

Z2

2
Z2

3

Solm n,
4

Solm n,
4
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holonomy group Φ ' Assume that Π is a Bieberbach

group. Then ΠΦ is also Bieberbach group for any

subgroup Φ ' of Φ Let U, V be nontrivial generators

of Φ . With Φ ' = <U> because ΠΦ is torsion-free, the

discussion in Subsection 2.2 tells that ∈

ZΦ 'SUBSETZΦ . Similarly, we have ∈ ZΦ .

Hence = (s,UV) = (s, I)(0,UV). This forces

(0, UV) ∈ ZΦ which implies from subsection 2.2

again that when Φ ' = <UV>, ΠΦ is not torsion-free.

This is a contradiction. Consequently, we have

Theorem 2.17. The Lie group  has no Bie-

berbach group with holonomy group  or 

Now, let Π be a crystallographic group of 

with holonomy group = <U, V> so that for some

proper Φ ' ⊂ Φ , ΠΦ ' is non-Bieberbach, crystallo-

graphic group. By Theorem 2.16, we must have

Φ ' = <−I>, and ΠΦ '= Γ × Z2. We may assume that

V = −I Then U must be one of ±X, ±Y, and ±Z By

Theorem 2.16 again, when Φ ' = <U> we must have

 Consequently, we have

Theorem 2.18.

(1) If  admits a Bieberbach group

 (and hence a Bieberbach group

) with holonomy group Z2= <U> (and

Z2= <−U> respectively) where U ∈{±X, ±Y, ±Z}

then  admits a unique, up to isomorphism,

crystallographic group

where the holonomy group is = {±I, ±U}.

(2) If  does not admit a Bieberbach group

with holonomy group Z2 then  does not admit

a crystallographic group with holonomy group .

Theorem 2.19. The Lie group  does not

admit a crystallographic group with holonomy group

.

Proof. Assume that  admits a crystallo-

graphic group with holonomy group Φ ={±I, ±X, ±Y,

±Z}. By Theorem 2.16, every element U of Φ −{±I}

must be lifted as an element  in ZΦ  Since

, ∈ ZΦ , we have = (s, −Z)

= (s, I)(0, −Z). This implies that −Z ∈Φ is lifted to (0,

−Z)∈ ZΦ a contradiction.
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2
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--- U,⎝ ⎠
⎛ ⎞ s

2
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Z2

3
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4
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ΠΦ ' Z
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Solm n,
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AU

×
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2

Solm n,
4

Solm n,
4

Z2

2

Solm n,
4

Z2

3

Solm n,
4

s
2
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2
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