DOI QR코드

DOI QR Code

Ex situ Coloration of Laccase-Entrapped Bacterial Cellulose with Natural Phenolic Dyes

  • Kim, Hyunjin (Dept. of Clothing and Textiles, Sookmyung Women's University) ;
  • Song, Ji Eun (Dept. of Fashion and Clothing, Seowon University) ;
  • Kim, Hye Rim (Dept. of Clothing and Textiles, Sookmyung Women's University)
  • Received : 2021.06.23
  • Accepted : 2021.08.09
  • Published : 2021.10.31

Abstract

This study aimed to ex situ colorize laccase-entrapped bacterial cellulose (BC) with natural phenolic dyes, namely,madder, turmeric, and cochineal, and to determine the effect of laccase entrapment on the dyeability of BC using color strength (K/S) analysis. Results showed that laccase entrapment improved the dyeability of BC and that pre-entrapment was the most effective method, compared with meta-entrapment and post-entrapment methods. In addition, surface characterizations confirmed the successful entrapment of laccase inside the BC nanostructure and retention of the cellulosic and crystalline structures of BC. The washing durability test confirmed that the K/S value of BC had improved after laccase entrapment. Furthermore, laccase-entrapped BC colorized with cochineal dye had the highest washing durability due to the high molecular weight of cochineal dyerelative to the other dyes. This study suggests a novel method for enhancing the dyeability and washing durability of BC colorized ex situ with natural phenolic dyes by laccase entrapment.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1 A1B03031959), and was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2019R1A2C1009217).

References

  1. Abol-Fotouh, D., Hassan, M. A., Shokry, H., Roig, A., Azab, M. S., & Kashyout, A. E.-H. B. (2020). Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Scientific Reports, 10(1):3491. doi:10.1038/s41598-020-60315-9
  2. Adibzadeh, P., & Motakef-Kazemi, N. (2018). Preparation and characterization of curcumin-silver nanoparticle and evaluation of the effect of poly ethylene glycol and temperature. Journal of Nanoanalysis, 5(3), 156-162. doi:10.22034/jna.2018.543607
  3. Akira, K., Hiroyasu, K., & Norikazu, I. (1990). The effect of a direct dye on the formation process of the structure of bacterial cellulose. Chemistry Letters, 19(6), 949-952. doi:10.1246/cl.1990.949
  4. Andrade, F. K., Morais, J. P. S., Muniz, C. R., Nascimento, J. H. O., Vieira, R. S., Gama, F. M. P., & Rosa, M. F. (2019). Stable microfluidized bacterial cellulose suspension. Cellulose, 26(10), 5851-5864. doi:10.1007/s10570-019-02512-y
  5. Antunes, V., Candeias, A., Mirao, J., Carvalho, M. L., Serrao, V., Dias, C. B., ... Manso, M. (2018). On the origin of Goa Cathedral former altarpiece: Material and technical assessment to the work of Garcia Fernandes, Portuguese painter from 16th century Lisbon workshop. Microchemical Journal, 138, 226-237. doi:10.1016/j.microc.2018.01.018
  6. Azeredo, H. M. C., Barud, H., Farinas, C. S., Vasconcellos, V. M., & Claro., A. M. (2019). Bacterial cellulose as a raw material for food and food packaging applications. Frontiers in Sustainable Food Systems, 3:7. doi:10.3389/fsufs.2019.00007
  7. Bai, R., Yu, Y., Wang, Q., Yuan, J., & Fan, X. (2016). Effect of laccase on dyeing properties of polyphenol-based natural dye for wool fabric. Fibers and Polymers, 17(10), 1613-1620. doi:10.1007/s12221-016-5598-5
  8. Bebic, J., Banjanac, K., Rusmirovic, J., Corovic, M., Milivojevic, A., Simovic, M., ... Bezbradica, D. (2020). Amino-modified kraft lignin microspheres as a support for enzyme immobilization. RSC Advances, 10(36), 21495-21508. doi:10.1039/d0ra03439h
  9. Bhatti, I. A., Adeel, S., Jamal, M. A., Safdar, M., & Abbas, M. (2010). Influence of gamma radiation on the colour strength and fastness properties of fabric using turmeric (Curcuma longa L.) as natural dye. Radiation Physics and Chemistry, 79(5), 622-625. doi:10.1016/j.radphyschem.2009.12.006
  10. Blanquez, A., Ball, A. S., Gonzalez-Perez, J. A., Jimenez-Morillo, N. T., Gonzalez-Vila, F., Arias, M. E., & Hernandez, M. (2017). Laccase SilA from Streptomyces ipomoeae CECT 3341, a key enzyme for the degradation of lignin from agricultural residues? PLoS ONE, 12(11):e0187649. doi:10.1371/journal.pone.0187649
  11. Chan, C. K., Shin, J., & Jiang, S. X. K. (2018). Development of tailor-shaped bacterial cellulose textile cultivation techniques for zero-waste design. Clothing and Textiles Research Journal, 36(1), 33-44. doi:10.1177/0887302X17737177
  12. Chen, S., Zou, Y., Yan, Z., Shen, W., Shi, S., Zhang, X., & Wang, H. (2009). Carboxymethylated-bacterial cellulose for copper and lead ion removal. Journal of Hazardous Materials, 161(2-3), 1355-1359. doi:10.1016/j.jhazmat.2008.04.098
  13. Darne, P. A., Mehta, M. R., Agawane, S. B., & Prabhune, A. A. (2016). Bioavailability studies of curcumin-sophorolipid nano-conjugates in the aqueous phase: role in the synthesis of uniform gold nanoparticles. RSC Advances, 6(72), 68504-68514. doi:10.1039/c6ra13469f
  14. de S. Costa, A. F., de Amorim, J. D. P., Almeida, F. C. G., de Lima, I. D., de Paiva, S. C., Rocha, M. A. V., ... Sarubbo, L. A. (2019). Dyeing of bacterial cellulose films using plant-based natural dyes. International Journal of Biological Macromolecules, 121, 580-587. doi:10.1016/j.ijbiomac.2018.10.066
  15. Dhar, P., Etula, J., & Bankar, S. B. (2019). In situ bioprocessing of bacterial cellulose with graphene: Percolation network formation, kinetic analysis with physicochemical and structural properties assessment. ACS Applied Bio Materials, 2(9), 4052-4066. doi:10.1021/acsabm.9b00581
  16. Domskiene, J., Sederaviciute, F., & Simonaityte, J. (2019). Kombucha bacterial cellulose for sustainable fashion. International Journal of Clothing Science and Technology, 31(5), 644-652. doi:10.1108/IJCST-02-2019-0010
  17. Fernandes, M., Gama, M., Dourado, F., & Souto, A. P. (2019). Development of novel bacterial cellulose composites for the textile and shoe industry. Microbial Biotechnology, 12(4), 650-661. doi:10.1111/1751-7915.13387
  18. Gautam, C., Yadav, A. K., & Singh, A. K. (2012). A review on infrared spectroscopy of borate glasses with effects of different additives. International Scholarly Research Network, 2012:428497. doi:10.5402/2012/428497
  19. Goudarzi, M., Mir, N., Mousavi-Kamazani, M., Bagheri, S., & Salavati-Niasari, M. (2016). Biosynthesis and characterization of silver nanoparticles prepared from two novel natural precursors by facile thermal decomposition methods. Scientific Reports, 6(1):32539. doi:10.1038/srep32539
  20. Han, J., Shim, E., & Kim, H. R. (2019). Effects of cultivation, washing, and bleaching conditions on bacterial cellulose fabric production. Textile Research Journal, 89(6), 1094-1104. doi:10.1177/0040517518763989
  21. Iqbal, H. M. N., Kyazze, G., Locke, I. C., Tron, T., & Keshavarz, T. (2015). Development of novel antibacterial active, HaCaT biocompatible and biodegradable CA-g-P(3HB)-EC biocomposites with caffeic acid as a functional entity. eXPRESS Polymer Letters, 9(9), 764-772. doi:10.3144/expresspolymlett.2015.72
  22. International Organization for Standardization. (2013, March). ISO 105-E01:2013 Textiles - Tests for colour fastness - Part E01: Colour fastness to water. ISO. Retrieved from https://www.iso.org/standard/57962.html
  23. Jang, W. D., Hwang, J. H., Kim, H. U., Ryu, J. Y., & Lee, S. Y. (2017). Bacterial cellulose as an example product for sustainable production and consumption. Microbial Biotechnology, 10(5), 1181-1185. doi:10.1111/1751-7915.12744
  24. Kamel, M. M., El-Shishtawy, R. M., Yussef, B. M., & Mashaly, H. (2005). Ultrasonic assisted dyeing: III. Dyeing of wool with lac as a natural dye. Dyes and Pigments, 65(2), 103-110. doi:10.1016/j.dyepig.2004.06.003
  25. Kim, H., Song, J. E., Silva, C., & Kim, H. R. (2020). Production of conductive bacterial cellulose-polyaniline membranes in the presence of metal salts. Textile Research Journal, 90(13-14), 1517-1526. doi:10.1177/0040517519893717
  26. Kim, H., Yi, J.-Y., Kim, B.-G., Song, J. E., Jeong, H.-J., & Kim, H. R. (2020). Development of cellulose-based conductive fabrics with electrical conductivity and flexibility. PLoS ONE, 15(6):e0233952. doi:10.1371/journal.pone.0233952
  27. Kim, S., Lee, H., Kim, J., Oliveira, F., Souto, P., Kim, H., & Nakamatsu, J. (2018). Laccase-mediated grafting of polyphenols onto cationized cotton fibers to impart UV protection and antioxidant activities. Journal of Applied Polymer Science, 135(6):45801. doi:10.1002/app.45801
  28. Kolodziejczak-Radzimska, A., Ciesielczyk, F., & Jesionowski, T. (2019). A novel biocatalytic system obtained via immobilization of aminoacylase onto sol-gel derived ZrO2.SiO2 binary oxide material: physicochemical characteristic and catalytic activity study. Adsorption, 25(4), 855-864. doi:10.1007/s10450-019-00085-7
  29. Kus, P. M., Congiu, F., Teper, D., Sroka, Z., Jerkovic, I., & Tuberoso, C. I. G. (2014). Antioxidant activity, color characteristics, total phenol content and general HPLC fingerprints of six Polish unifloral honey types. LWT - Food Science and Technology, 55(1), 124-130. doi:10.1016/j.lwt.2013.09.016
  30. Legan, L., Retko, K., & Ropret, P. (2016). Vibrational spectroscopic study on degradation of alizarin carmine. Microchemical Journal, 127, 36-45. doi:10.1016/j.microc.2016.02.002
  31. Li, S., Huang, D., Zhang, B., Xu, X., Wang, M., Yang, G., & Shen, Y. (2014). Flexible supercapacitors based on bacterial cellulose paper electrodes. Advanced Energy Materials, 4(10):1301655. doi:10.1002/aenm.201301655
  32. Lin, D., Liu, Z., Shen, R., Chen, S., & Yang, X. (2020). Bacterial cellulose in food industry: Current research and future prospects. International Journal of Biological Macromolecules, 158, 1007-1019. doi:10.1016/j.ijbiomac.2020.04.230
  33. Lopes, T. D., Riegel-Vidotti, I. C., Grein, A., Tischer, C. A., Faria-Tischer, P. C. d. S. (2014). Bacterial cellulose and hyaluronic acid hybrid membranes: Production and characterization. International Journal of Biological Macromolecules, 67, 401-408. doi:10.1016/j.ijbiomac.2014.03.047
  34. Ma, L., Bi, Z., Xue, Y., Zhang, W., Huang, Q., Zhang, L., & Huang, Y. (2020). Bacterial cellulose: an encouraging ecofriendly nano-candidate for energy storage and energy conversion. Journal of Materials Chemistry A, 8(12), 5812-5842. doi:10.1039/c9ta12536a
  35. Maamoun, D., Osman, H., & Nassar, S. H. (2014). Cotton/wool printing with natural dyes nano-particles. Journal of International Environmental Application and Science, 9(1), 90-99.
  36. Maryam, & Rahmad, D. (2019). Synthesis of nano bacterial cellulose using acid hydrolysis-ultrasonication treatment. Journal of Physics: Conference Series, 1185:012028. doi:10.1088/1742-6596/1185/1/012028
  37. Miyamoto, H., Tsuduki, M., Ago, M., Yamane, C., Ueda, M., & Okajima, K. (2014). Influence of dyestuffs on the crystallinity of a bacterial cellulose and a regenerated cellulose. Textile Research Journal, 84(11), 1147-1158. doi:10.1177/0040517513517960
  38. Ochaikul, D., Chotirittikrai, K., Chantra, J., & Wutigornsombatkul, S. (2006). Studies on fermentation of Monascus purpureus TISTR 3090 with bacterial cellulose from Acetobacter xylinum TISTR 967. KMITL Science and Technology Journal, 6(1), 13-17.
  39. Osman Adam, O. A., Abadi, R. S. M., & Ayoub, S. M. H. (2020). Antioxidant activity, total phenolic and flavonoid contents and cytotoxic activity of Euphorbia aegyptiaca. Journal of Drug Delivery and Therapeutics, 10(2), 37-41. doi:10.22270/jddt.v10i2.3911
  40. Pacheco, G., de Mello, C. V., Chiari-Andreo, B. G., Isaac, V. L. B., Ribeiro, S. J. L., Pecoraro, E., & Trovatti, E. (2018). Bacterial cellulose skin masks-Properties and sensory tests. Journal of Cosmetic Dermatology, 17(5), 840-847. doi:10.1111/jocd.12441
  41. Pang, M., Huang, Y., Meng, F., Zhuang, Y., Liu, H., Du, M., ... Cai, Y. (2020). Application of bacterial cellulose in skin and bone tissue engineering. European Polymer Journal, 122:109365. doi:10.1016/j.eurpolymj.2019.109365
  42. Sajjad, W., He, F., Ullah, M. W., Ikram, M., Shah, S. M., Khan, R., ... Wahid, F. (2020). Fabrication of bacterial cellulosecurcumin nanocomposite as a novel dressing for partial thickness skin burn. Frontiers in Bioengineering and Biotechnology, 8:553037. doi:10.3389/fbioe.2020.553037
  43. Saputri, Y., Yusriana, & Munawar, A. A. (2019). Infrared spectroscopic features of turmeric powder. IOP Conference Series: Earth and Environmental Science, 365:012051. doi:10.1088/1755-1315/365/1/012051
  44. Shams-Nateri, A. (2011). Reusing wastewater of madder natural dye for wool dyeing. Journal of Cleaner Production, 19(6-7), 775-781. doi:10.1016/j.jclepro.2010.12.018
  45. Sheu, F., Wang, C. L., & Shyu, Y. T. (2008). Fermentation of Monascus purpureus on bacterial cellulose-nata and the color stability of Monascus-nata complex. Journal of Food Science, 65(2), 342-345. doi:10.1111/j.1365-2621.2000.tb16004.x
  46. Shim, E., & Kim, H. R. (2019). Coloration of bacterial cellulose using in situ and ex situ methods. Textile Research Journal, 89(7), 1297-1310. doi:10.1177/0040517518770673
  47. Sindhu, K., Rajaram, A., Sreeram, K. J., & Rajaram, R. (2014). Curcumin conjugated gold nanoparticle synthesis and its biocompatibility. RSC Advances, 4(4), 1808-1818. doi:10.1039/c3ra45345f
  48. Sivakumar, V., Vijaeeswarri, J., & Anna, J. L. (2011). Effective natural dye extraction from different plant materials using ultrasound. Industrial Crops and Products, 33(1), 116-122. doi:10.1016/j.indcrop.2010.09.007
  49. Song, J. E., Cavaco-Paulo, A., Silva, C., & Kim, H. R. (2020). Improvement of bacterial cellulose nonwoven fabrics by physical entrapment of lauryl gallate oligomers. Textile Research Journal, 90(2), 166-178. doi:10.1177/0040517519862886
  50. Song, J. E., Silva, C., Cavaco-Paulo, A. M. & Kim, H. R. (2019). Functionalization of bacterial cellulose nonwoven by poly (fluorophenol) to improve its hydrophobicity and durability. Frontiers in Bioengineering and Biotechnology, 7:332. doi:10.3389/fbioe.2019.00332
  51. Song, J. E., Su, J., Loureiro, A., Martins, M., Cavaco-Paulo, A., Kim, H. R., & Silva, C. (2017). Ultrasound-assisted swelling of bacterial cellulose. Engineering in Life Sciences, 17(10), 1108-1117. doi:10.1002/elsc.201700085
  52. Song, J. E., Su, J., Noro, J., Cavaco-Paulo, A., Silva, C., & Kim, H. R. (2018). Bio-coloration of bacterial cellulose assisted by immobilized laccase. AMB Express, 8:19. doi:10.1186/s13568-018-0552-0
  53. Tayyab, N., Sayed, R. Y., Faisal, R., Wang, W., Javeed, A. A., Mudassar, A., ... Muhammad, A. (2020). Dyeing and colour fastness of natural dye from Citrus aurantium on Lyocell fabric. Industria Textila, 71(4), 350-356. doi:10.35530/IT.071.04.1686
  54. Torres, F. G., Arroyo, J. J., & Troncoso, O. P. (2019). Bacterial cellulose nanocomposites: An all-nano type of material. Materials Science and Engineering: C, 98, 1277-1293. doi:10.1016/j.msec.2019.01.064
  55. Ul-Islam, M., Shah, N., Ha, J. H., & Park, J. K. (2011). Effect of chitosan penetration on physico-chemical and mechanical properties of bacterial cellulose. Korean Journal of Chemical Engineering, 28(8):1736. doi:10.1007/s11814-011-0042-4
  56. Ul-Islam, M., Subhan, F., Islam, S. U., Khan, S., Shah, N., Manan, S., ... Yang, G. (2019). Development of three-dimensional bacterial cellulose/chitosan scaffolds: Analysis of cell-scaffold interaction for potential application in the diagnosis of ovarian cancer. International Journal of Biological Macromolecules, 137, 1050-1059. doi:10.1016/j.ijbiomac.2019.07.050
  57. Velmurugan, P., TamilSelvi, A., Lakshmanaperumalsamy, P., Park, J., & Oh, B.-T. (2013). The use of cochineal and Monascus purpureus as dyes for cotton fabric. Coloration Technology, 129(4), 246-251. doi:10.1111/cote.12032
  58. Wu, Z.-Y., Liang, H.-W., Li, C., Hu, B.-C., Xu, X.-X., Wang, Q., ... Yu, S.-H. (2014). Dyeing bacterial cellulose pellicles for energetic heteroatom doped carbon nanofiber aerogels. Nano Research, 7(12), 1861-1872. doi:10.1007/s12274-014-0546-4