Acknowledgement
Research work of the author is financially supported by University Project Research grant of University of North Bengal, Darjeeling, India.
References
- Abd-Alla, A.M., Abo-Dahab, S.M. and Hammad, H.A.H. (2011), "Propagation of Rayleigh waves in generalized magneto-thermoelastic orthotropic material under initial stress and gravity field", Appl. Math. Model., 35, 2981-3000. https://doi.org/10.1016/j.apm.2010.11.067.
- Abd-Alla, A.M., Abo-Dahab, S.M. and. Bayones, F.S. (2013) "Propagation of Rayleigh waves in magneto-thermoelastic half-space of a homogeneous orthotropic material under the effect of rotation, initial stress and gravity field", J. Vib. Control, 19(9), 1395-1420. https://doi.org/10.1177/1077546312444912.
- Abd-Alla, A.N. and Al-Dawy, A.A. (2001), "Thermal relaxation times effect on Rayleigh waves in generalized thermoelastic media", J. Therm. Stress., 24(4), 367-382. https://doi.org/10.1080/01495730151078171
- Arefi, M. and Meskini, M. (2019), "Application of hyperbolic shear deformation theory to free vibration analysis of functionally graded porous plate with piezoelectric face-sheets", Struct. Eng. Mech., 71, 459-467. https://doi.org/10.12989/sem.2019.71.5.459.
- Bijarnia, R. and Singh, B. (2016), "Propagation of plane waves in a rotating transversely isotropic two temperature generalized thermoelastic solid half-space with voids", Int. J. Appl. Mech. Eng., 21(2), 285-301. https://doi.org/10.1515/ijame-2016-0018.
- Biswas, S. (2018), "Stroh analysis of Rayleigh waves in anisotropic thermoelastic medium", J. Therm. Stress., 41(5), 627-644. https://doi.org/10.1080/01495739.2018.1425940.
- Biswas, S. and Abo-Dahab, S.M. (2018), "Effect of phase-lags on Rayleigh waves in magneto-thermoelastic orthotropic medium", Appl. Math. Model., 59, 713-727. https://doi.org/10.1016/j.apm.2018.02.025.
- Biswas, S. and Mukhopadhyay, B. (2019), "Eigenfunction expansion method to characterize Rayleigh wave propagation in orthotropic medium with phase-lags", Waves Rand. Complex Media, 29(4), 722-742. https://doi.org/10.1080/17455030.2018.1470355.
- Bucur, A.V., Passarella, F. and Tibullo, V. (2014), "Rayleigh surface waves in the theory of thermoelastic materials with voids", Meccanica, 49, 2069-2078. https://doi.org/10.1007/s11012-013-9850-4.
- Chadwick, P. and Seet, L.T.C. (1970), "Wave propagation in a transversely isotropic heat-conducting elastic material", Mathematica, 17, 255-274. https://doi.org/10.1112/S002557930000293X.
- Chakraborty, S.K. and Pal, R.P. (1969), "Thermoelastic Rayleigh waves in transversely isotropic solids", Pure Appl. Geophys., 76, 79-86. https://doi.org/10.1007/BF00877839.
- Chandrasekharaiah, D.S. and Srikantaiah, K.R. (1984), "On temperature rate dependent thermoelastic Rayleigh waves in half-space", Gerlands Beirtage Zur Geophysik, 93, 133-141.
- Chandrasekharaih, D.S. (1986), "Thermoelasticity with second sound: A review", Appl. Mech. Rev., 39(3), 355-376. https://doi.org/10.1115/1.3143705.
- Chandrasekharaih, D.S. (1998), "Hyperbolic thermoelasticity: A review of recent literature", Appl. Mech. Rev., 51(12), 705-729. https://doi.org/10.1115/1.3098984.
- Chirita, S. and Arusoaie, A. (2021), "Thermoelastic waves in double porosity materials", Eur. J. Mech. A/Solid., 86, 104177. https://doi.org/10.1016/j.euromechsol.2020.104177.
- Ciarletta, M. and Scarpetta, E. (1990), "Reciprocity and variational theorems in a generalized thermoelastic theory for non simple materials with voids", Riv. Mat. Univ. Parma, 16, 183-194.
- Cowin, S.C. and Nunziato, J.W. (1983), "Linear elastic materials with voids", J. Elast., 13, 125-147. https://doi.org/10.1007/BF00041230.
- Das, N.C. and Bhakta, P.C. (1985), "Eigen function expansion method to the solution of simultaneous equations and its application in mechanics", Mech. Res. Commun., 12, 19-29. https://doi.org/10.1016/0093-6413(85)90030-8.
- Das, N.C., Lahiri, A. and Giri, R.R. (1997), "Eigen value approach to generalized thermoelasticity", Ind. J. Pure Appl. Math., 28(12), 1573-1594.
- Dwan, N.C. and Chakraborty, S.K. (1988), "On Rayleigh waves in Green-Lindsay's model of generalized thermoelastic media", Ind. J. Pure Appl. Math., 20(3), 276-283.
- Ebrahami, F., Haghi, P. and Dabbagh, A. (2018), "Analytical wave dispersion modeling in advanced piezoelectric double-layered nanobeam systems", Struct. Eng. Mech., 67, 175-183. https://doi.org/10.12989/sem.2018.67.2.175.
- Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elast., 2, 1-7. https://doi.org/10.1007/BF00045689.
- Green, A.E. and Naghdi, P.M. (1991), "A re-examination of the basic postulates of thermomechanics", Proc. Roy. Soc. London Ser. A, 432, 171-194. https://doi.org/10.1098/rspa.1991.0012.
- Green, A.E. and Naghdi, P.M. (1992), "On damped heat waves in an elastic solid", J. Therm. Stress., 15, 252-264. https://doi.org/10.1080/01495730601130919.
- Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elast., 31, 189-208. https://doi.org/10.1007/BF00044969.
- Iesan, D. (1986), "A theory of thermoelastic materials with voids", Acta Mechanica, 60, 67-89. https://doi.org/10.1007/BF01302942.
- Iesan, D. (1987), "A theory of initially stressed thermoelastic materials with voids", An. St. Univ. Iasi Mati, 33, 167-184.
- Kaur, G., Singh, D. and Tomar, S.K. (2018), "Rayleigh type wave in a nonlocal elastic solid with voids", Eur. J. Mech. A/Solid., 71, 134-150. https://doi.org/10.1016/j.euromechsol.2018.03.015.
- Kocal, T. and Akbarov, S.D. (2019), "The influence of the rheological parameters on the dispersion of the flexural waves in a viscoelastic bi-layered hollow cylinder", Struct. Eng. Mech., 71, 577-601. https://doi.org/10.12989/sem.2019.71.5.577.
- Kumar, R., Sharma, N. and Lata, P. (2016), "Effects of hall current in a transversely isotropic magnetothermoelastic with and without energy dissipation due to normal force", Struct. Eng. Mech., 57, 91-103. http://doi.org/10.12989/sem.2016.57.1.091.
- Lata, P. (2018), "Reflection and refraction of plane waves in layered nonlocal elastic and anisotropic thermoelastic medium", Struct. Eng. Mech., 66, 113-124. https://doi.org/10.12989/sem.2018.66.1.113.
- Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15, 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
- Mohajer, M., Zhou, J. and Jiang, L. (2021), "Small amplitude Rayleigh-Lamb wave propagation in a finitely deformed viscoelastic dielectric elastomer (DE) layer", Int. J. Solid. Struct., 208-209, 93-106. https://doi.org/10.1016/j.ijsolstr.2020.10.006.
- Nowinski, J.L. (1978), Theory of Thermoelasticity with Applications, Vol. 3, Springer.
- Nunziato, J.W. and Cowin, S.C. (1979), "A non linear theory of elastic material with voids", Arch. Rat. Mech. Anal., 72, 175-201. https://doi.org/10.1007/BF00249363.
- Quintanilla, R. and Racke, R. (2008), "A note on stability in threephase-lag heat conduction", Int. J. Heat Mass Transf., 51, 24-29. https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.045.
- Rossikin, Y.A. and Shitikova, M.V. (2001), "Nonstationary Rayleigh waves on the thermally-insulated surfaces of some thermoelastic bodies of revolution", Acta Mechanica, 150(1-2), 87-105. https://doi.org/10.1007/BF01178547.
- Roy Choudhuri, S.K. (2007), "On a thermoelastic three phase lag model", J. Therm. Stress., 30, 231-238. https://doi.org/10.1080/01495730601130919.
- Singh, B., Kumari, S. and Singh, J. (2014), "Propagation of the Rayleigh wave in an initially stressed transversely isotropic dual phase lag magnetothermoelastic half space", J. Eng. Phys. Thermophys., 87(6), 1539-1547. https://doi.org/10.1007/s10891-014-1160-8.
- Tzou, D.Y. (1995), "A unique field approach for heat conduction from macro to micro scales", ASME, J. Heat Transf., 117, 8-16. https://doi.org/10.1115/1.2822329.
- Vinh, P.C. and Anh, V.T.N. (2017), "Rayleigh waves in an orthotropic elastic half space overlaid by an elastic layer with spring contact", Meccanica, 52, 1189-1199. https://doi.org/10.1007/s11012-016-0464-5.
- Wojnar, R. (1985), "Rayleigh waves in thermoelasticity with relaxation times", International Conference on Surface Waves in Plasma and Solids, Singapore.