Acknowledgement
This work was supported by JSPS KAKENHI (17H03294)", Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures", and High Performance Computing Infrastructure" in Japan (Project ID: jh190073-NAH, jh200052-NAH, and jh210033-NAH).
References
- Bonnet, M. (2006), "Topological sensitivity for 3D elastodynamic and acoustic inverse scattering in the time domain", Comput. Meth. Appl. Mech. Eng., 195(5), 5239-5254. https://doi.org/10.1016/j.cma.2005.10.026.
- Datta, S.K., Al-Nassar, Y. and Shah, A.H. (1991), "Lamb wave scattering by a surface breaking crack in a plate", Review of Progress in Quantitative Nondestructive Evaluation, La Jolla, CA, USA, July.
- Fink, M. (1992), "Time reversal of ultrasonic fields - Part I: Basic principles", IEEE T. Ultrason Ferr, 39(5), 555-566. https://doi.org/10.1109/58.156174.
- Gunawan, A. and Hirose, S. (2004), "Mode-exciting method for lamb wave-scattering analysis", J. Acoust. Soc. Am., 115(3), 996-1005. https://doi.org/10.1121/1.1639330.
- Hughes, T.J.R. (2012), The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Dover Publications, New York, NY, USA.
- Kimoto, K., Nakahata, K. and Saitoh, T. (2017), "An elastodynamic computational time-reversal method for shape reconstruction of traction-free scatterers", Wave Motion., 72, 23-40. https://doi.org/10.1016/j.wavemoti.2016.12.007.
- Koshiba, M., Karakida S. and Suzuki, M. (1984), "Finite-element analysis of lamb wave scattering in an elastic plate waveguide, IEEE Tran. Sonics Ultrason, 31(1), 18-24. https://doi.org/10.1109/T-SU.1984.31456.
- Maruyama, T., Saitoh, T. and Hirose, S. (2017), "Numerical study on sub-harmonic generation due to interior and surface breaking cracks with contact boundary conditions using time-domain boundary element method", Int. J. Solid. Struct., 126-127, 74-89. https://doi.org/10.1016/j.ijsolstr.2017.07.029.
- Morikawa, H., Saitoh, T. and Kimoto, K. (2018), "Application of time-reversal method using topological sensitivity for defect detection to ultrasonic phased array testing", J. JPN Soc. Civil Eng., Ser. A2 (Appl. Mech. (AM)), 74(2), 85-93. (in Japanese) https://doi.org/10.2208/jscejam.74.I_85.
- Nakahata, K., Amano, Y., Mizota, H. and Nagashima, Y. (2019), "Simulation-aided time reversal analysis for defect reconstruction in anisotropic materials", Insight-Non-Destruct. Test. Cond. Monit., 61(11), 669-675. https://doi.org/10.1784/insi.2019.61.11.669.
- Nematzadeh, M. and Fallah-Valukolaee, S. (2017), "Effectiveness of fibers and binders in high-strength concrete under chemical corrosion", Struct. Eng. Mech., 64(2), 243-257. http://doi.org/10.12989/sem.2017.64.2.243.
- Rose J.L. (1999), Ultrasonic Waves in Solid Media, Cambridge University Press, Cambridge, Cambridgeshire, UK.
- Saitoh, T., Gunawan, A. and Hirose, S. (2003), "Application of fast multipole boundary element method to scattering analysis of SH waves by lap joint", AIP Conf. Proc., 657, 1103-1110. https://doi.org/10.1063/1.1570256.
- Saleem, M. (2017), "Study to detect bond degradation in reinforced concrete beams using ultrasonic pulse velocity test method", Struct. Eng. Mech., 64(4), 427-436. http://doi.org/10.12989/sem.2017.64.4.427.
- Sigmund, O. and Maute, K. (2013), "Topology optimization approaches", Struct. Multidisc. Optim., 48, 1031-1055. https://doi.org/10.1007/s00158-013-0978-6.
- Wang, B. and Hirose, S. (2012), "Inverse problem for shape reconstruction of plate-thinning by guided SH-waves", Mater. Trans., 53(10), 1782-1789. https://doi.org/10.2320/matertrans.I-M2012823.
- Zhao, N., Wu, B., Liu, X., Ding, K., Hu, Y. and Bayat, M. (2019), "Quantitative evaluation of through-thickness rectangular notch in metal plates based on lamb waves", Struct. Eng. Mech., 71(6), 751-761. http://doi.org/10.12989/sem.2019.71.6.751.