과제정보
This work was supported by the National Institute of Biological Resources, funded by the Ministry of Environment of the Republic of Korea (projects NIBR201921101 and NIBR202021101) and by the Ministry of Science and ICT, Korea, under the Grand Information Technology Research Center support program [IITP-2021-2020-0-01489] supervised by the IITP. The USDA National Institute of Food & Agriculture and Federal Appropriations (Project PEN04655; Accession # 1016291) supported S. Kang
참고문헌
- Kirk P, Cannon P, Minter D, et al. Dictionary of the fungi. 10th ed. Wallingford (UK): CABI Publishing; 2008.
- Fournier J, Flessa F, Persoh D, et al. Three new Xylaria species from southwestern Europe. Mycol Progr. 2011;10(1):33-52. https://doi.org/10.1007/s11557-010-0671-8
- Stadler M, Kuhnert E, Persoh D, et al. The xylariaceae as model example for a unified nomenclature following the "one Fungus-One name"(1F1N) concept. Mycology. 2013;4:5-21.
- Song F, Wu SH, Zhai YZ, et al. Secondary metabolites from the genus Xylaria and their bioactivities. Chem Biodivers. 2014;11(5):673-694. https://doi.org/10.1002/cbdv.201200286
- Edwards RL, Maitland DJ, Pittayakhajonwut P, et al. Metabolites of the higher fungi. Part 33. 1 grammicin, a novel bicyclic C7H6O4 furanopyranol from the fungus Xylaria grammica (mont.) Fr. J Chem Soc, Perkin Trans 1. 2001;11:1296-1299.
- Kim TY, Jang JY, Yu NH, et al. Nematicidal activity of grammicin produced by Xylaria grammica KCTC 13121BP against Meloidogyne incognita. Pest Manag Sci. 2018;74(2):384-391. https://doi.org/10.1002/ps.4717
- Scott P, Kennedy B, Van Walbeek W. Desoxypatulinic acid from a patulin-producing strain of Penicillium patulum. Experientia. 1972; 28(10):1252-1252.
- Godio R, Fouces R, Gudina E, et al. Agrobacterium tumefaciens-mediated transformation of the antitumor clavaric acid-producing basidiomycete Hypholoma sublateritium. Curr Genet. 2004;46(5): 287-294. https://doi.org/10.1007/s00294-004-0533-5
- Michielse CB, Hooykaas PJ, van den Hondel CA, et al. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet. 2005;48(1):1-17. https://doi.org/10.1007/s00294-005-0578-0
- Ruiz-Diez B. Strategies for the transformation of filamentous fungi. J Appl Microbiol. 2002;92: 189-195. https://doi.org/10.1046/j.1365-2672.2002.01516.x
- Frandsen RJ. A guide to binary vectors and strategies for targeted genome modification in fungi using Agrobacterium tumefaciens-mediated transformation. J Microbiol Methods. 2011;87(3): 247-262. https://doi.org/10.1016/j.mimet.2011.09.004
- Hansen G, Wright MS. Recent advances in the transformation of plants. Trends Plant Sci. 1999; 4(6):226-231. https://doi.org/10.1016/S1360-1385(99)01412-0
- Covert SF, Kapoor P, Lee M-h, et al. Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum. Mycol Res. 2001; 105(3):259-264. https://doi.org/10.1017/S0953756201003872
- Morioka LRI, Furlaneto MC, Bogas AC, et al. Efficient genetic transformation system for the ochratoxigenic fungus Aspergillus carbonarius. Curr Microbiol. 2006;52(6):469-472. https://doi.org/10.1007/s00284-005-0402-6
- Liu YG, Mitsukawa N, Oosumi T, et al. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 1995;8(3):457-463. https://doi.org/10.1046/j.1365-313X.1995.08030457.x
- Ochman H, Gerber AS, Hartl DL. Genetic applications of an inverse polymerase chain reaction. Genetics. 1988;120(3):621-623. https://doi.org/10.1093/genetics/120.3.621
- Khang CH, Park SY, Lee YH, et al. A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum. Fungal Genet Biol. 2005;42(6):483-492. https://doi.org/10.1016/j.fgb.2005.03.004
- Park S-Y, Jeong M-H, Wang H-Y, et al. Agrobacterium tumefaciens-mediated transformation of the lichen fungus, Umbilicaria muehlenbergii. PLoS One. 2013;8(12):e83896. https://doi.org/10.1371/journal.pone.0083896
- Daboussi M, Djeballi A, Gerlinger C, et al. Transformation of seven species of filamentous fungi using the nitrate reductase gene of Aspergillus nidulans. Curr Genet. 1989;15(6): 453-456. https://doi.org/10.1007/BF00376803
- De Groot MJ, Bundock P, Hooykaas PJ, et al. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol. 1998; 16(9):839-842. https://doi.org/10.1038/nbt0998-839
- Mullins E, Romaine CP, Chen X, et al. Agrobacterium tumefaciens-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology. 2001;91(2):173-180. https://doi.org/10.1094/PHYTO.2001.91.2.173
- Leung H, Lehtinen U, Karjalainen R, et al. Transformation of the rice blast fungus Magnaporthe grisea to hygromycin B resistance. Curr Genet. 1990;17(5):409-411. https://doi.org/10.1007/BF00334519
- Punt PJ, van Biezen N, Conesa A, et al. Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol. 2002;20(5): 200-206. https://doi.org/10.1016/S0167-7799(02)01933-9
- Winans SC. Two-way chemical signaling in Agrobacterium-plant interactions. Microbiol Rev. 1992;56(1):12-31. https://doi.org/10.1128/mr.56.1.12-31.1992
- Bundock P, Hooykaas PJ. Integration of Agrobacterium tumefaciens T-DNA in the Saccharomyces cerevisiae genome by illegitimate recombination. Proc Natl Acad Sci USA. 1996; 93(26):15272-15275. https://doi.org/10.1073/pnas.93.26.15272