Acknowledgement
The authors thank Dr. Nguyen Thanh Dong from UniCRE, Czech Republic for advice and correct data, Dr. Derek Wilkinson from Charles University, Czech Republic for proofreading of the manuscript.
References
- Tchounwou PB, Yedjou CG, Patlolla AK, et al. Heavy metal toxicity and the environment. Mol Clin Environ Toxicol. 2012;101:133-164. https://doi.org/10.1007/978-3-7643-8340-4_6
- Jaishankar M, Tseten T, Anbalagan N, et al. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014;7(2):60-72. https://doi.org/10.2478/intox-2014-0009
- Stern BR. Essentiality and toxicity in copper health risk assessment: overview, update and regulatory considerations. J Toxicol Environ Health A. 2010; 73(2):114-127. https://doi.org/10.1080/15287390903337100
- Li L, Yang X. The essential element manganese, oxidative stress, and metabolic diseases: links and interactions. Oxid Med Cell Longev. 2018;2018: 1-11.
- O'Neal SL, Zheng W. Manganese toxicity upon overexposure: a decade in review. Curr Environ Health Rep. 2015;2(3):315-328. https://doi.org/10.1007/s40572-015-0056-x
- Brewer GJ. The risks of copper toxicity contributing to cognitive decline in the aging population and to Alzheimer's disease. J Am Coll Nutr. 2009; 28(3):238-242. https://doi.org/10.1080/07315724.2009.10719777
- Gupte A, Mumper RJ. Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat Rev. 2009;35(1):32-46. https://doi.org/10.1016/j.ctrv.2008.07.004
- Wang J, Chen C. Biosorbents for heavy metals removal and their future. Biotechnol Adv. 2009; 27(2):195-226. https://doi.org/10.1016/j.biotechadv.2008.11.002
- Soares EV, Soares HMVM. Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review. Environ Sci Pollut Res Int. 2012;19(4):1066-1083. https://doi.org/10.1007/s11356-011-0671-5
- Mishra A, Malik A. Recent advances in microbial metal bioaccumulation. Crit Rev Environ Sci Technol. 2013;43(11):1162-1222. https://doi.org/10.1080/10934529.2011.627044
- Igiri BE, Okoduwa SIR, Idoko GO, et al. Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol. 2018;2018:1-16.
- Vadkertiova R, Molnarova J, Lux A, et al. Yeasts associated with an abandoned mining area in pernek and their tolerance to different chemical elements. Folia Microbiol. 2016;61(3):199-207. https://doi.org/10.1007/s12223-015-0424-9
- Rehman A, Farooq H, Shakoori AR. Copper tolerant yeast, Candida tropicalis, isolated from industrial effluents: its potential use in wastewater treatment. Pak J Zool. 2007;39:405.
- Rehman A, Anjum MS, Hasnain S. Cadmium biosorption by yeast, Candida tropicalis CBL-1, isolated from industrial wastewater. J Gen Appl Microbiol. 2010;56(5):359-368. https://doi.org/10.2323/jgam.56.359
- Farhan SN, Khadom AA. Biosorption of heavy metals from aqueous solutions by Saccharomyces cerevisiae. Int J Ind Chem. 2015;6(2):119-130. https://doi.org/10.1007/s40090-015-0038-8
- Massoud R, Hadiani MR, Hamzehlou P, et al. Bioremediation of heavy metals in food industry: application of Saccharomyces cerevisiae. Electron J Biotechnol. 2019;37:56-60. https://doi.org/10.1016/j.ejbt.2018.11.003
- Fadel M, Hassanein NM, Elshafei MM, et al. Biosorption of manganese from groundwater by biomass of Saccharomyces cerevisiae. HBRC J. 2017;13(1):106-113. https://doi.org/10.1016/j.hbrcj.2014.12.006
- do Nascimento JM, de Oliveira JD, Rizzo ACL, et al. Biosorption Cu (II) by the yeast Saccharomyces cerevisiae. Biotechnol Reports. 2019; 21:e00315. https://doi.org/10.1016/j.btre.2019.e00315
- Hernandez Mata KM, Monge Amaya O, Certucha Barragan MT, et al. Metallic biosorption using yeasts in continuous systems. Int J Photoenergy. 2013;2013:1-4.
- Amorim SS, Ruas FAD, Barboza NR, et al. Manganese (Mn2+) tolerance and biosorption by Meyerozyma guilliermondii and Meyerozyma caribbica strains. J Environ Chem Eng. 2018;6(4): 4538-4545. https://doi.org/10.1016/j.jece.2018.06.061
- Chen XC, Wang YP, Lin Q, et al. Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1. Colloids Surf B Biointerfaces. 2005;46(2):101-107. https://doi.org/10.1016/j.colsurfb.2005.10.003
- Surussawadee J, Khunnamwong P, Srisuk N, et al. Papiliotrema siamense fa, sp. nov., a yeast species isolated from plant leaves. Int J Syst Evol Microbiol. 2014;64(Pt 9):3058-3062. https://doi.org/10.1099/ijs.0.065607-0
- Hung C-S, Barlow DE, Varaljay VA, et al. The biodegradation of polyester and polyester polyurethane coatings using Papiliotrema laurentii. Int Biodeterior Biodegradation. 2019;139:34-43. https://doi.org/10.1016/j.ibiod.2019.02.002
- Nguyen KCT, Nguyen PV, Truong HTH. Heavy metal tolerance of novel papiliotrema yeast isolated from Vietnamese mangosteen. Mycobiology. 2020; 48(4):296-303. https://doi.org/10.1080/12298093.2020.1767020
- Yilmazer P, Saracoglu N. Bioaccumulation and biosorption of copper (II) and chromium (III) from aqueous solutions by Pichia stipitis yeast. J Chem Technol Biotechnol Int Res Process Environ Clean Technol. 2009;84:604-610.
- Iskandar NL, Zainudin NAIM, Tan SG. Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. J Environ Sci. 2011;23(5):824-830. https://doi.org/10.1016/S1001-0742(10)60475-5
- Anand P, Isar J, Saran S, et al. Bioaccumulation of copper by trichoderma viride. Bioresour Technol. 2006;97(8):1018-1025. https://doi.org/10.1016/j.biortech.2005.04.046
- Chen SH, Cheow YL, Ng SL, et al. Bioaccumulation and biosorption activities of indoor Metal-Tolerant Penicillium simplicissimum for removal of toxic metals. Int J Environ Res. 2020;14(2):235-242. https://doi.org/10.1007/s41742-020-00253-6
- Zamani J, Pournia P, Seirafi HA. A novel feeding method in commercial Baker's yeast production. J Appl Microbiol. 2008;105(3):674-680. https://doi.org/10.1111/j.1365-2672.2008.03781.x
- Uslu G, Tanyol M. Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead (II) and copper (II) ions onto Pseudomonas putida: effect of temperature. J Hazard Mater. 2006;135(1-3):87-93. https://doi.org/10.1016/j.jhazmat.2005.11.029
- Nguyen PV, Hlavacek O, Marsikova J, et al. Cyc8p and Tup1p transcription regulators antagonistically regulate Flo11p expression and complexity of yeast colony biofilms. PLoS Genet. 2018;14(7):e1007495. https://doi.org/10.1371/journal.pgen.1007495
- Parvathi K, Kumar RN, Nagendran R. Biosorption of manganese by Aspergillus niger and Saccharomyces cerevisiae. World J Microbiol Biotechnol. 2007;23(5):671-676. https://doi.org/10.1007/s11274-006-9281-7
- Ruas FAD, Amorim SS, Leao VA, et al. Rhodotorula mucilaginosa isolated from the manganese mine water in Minas Gerais, Brazil: potential employment for bioremediation of contaminated water. Water, Air, Soil Pollut. 2020; 231:1-14. https://doi.org/10.1007/s11270-019-4368-6
- Silva RMP, Rodriguez AA, De Oca JMGM, et al. Biosorption of chromium, copper, manganese and zinc by Pseudomonas aeruginosa AT18 isolated from a site contaminated with petroleum. Bioresour Technol. 2009;100:1533-1538. https://doi.org/10.1016/j.biortech.2008.06.057
- Ianis M, Tsekova K, Vasileva S. Copper biosorption by Penicillium cyclopium: equilibrium and modelling study. Biotechnol Biotechnol Equip. 2006;20(1):195-201. https://doi.org/10.1080/13102818.2006.10817332
- Bag H, Lale M, Turker AR. Determination of Cu, Zn and cd in water by FAAS after preconcentration by baker's yeast (Saccharomyces cerevisiae) immobilized on sepiolite. Fresenius J Anal Chem. 1999;363(3):224-230. https://doi.org/10.1007/s002160051178
- Huang H, Zhao Y, Xu Z, et al. Biosorption characteristics of a highly Mn(II)-resistant Ralstonia pickettii strain isolated from Mn ore. PLoS One. 2018; 13(8):e0203285. https://doi.org/10.1371/journal.pone.0203285
- Kanamarlapudi S, Chintalpudi VK, Muddada S. Application of biosorption for removal of heavy metals from wastewater. Biosorption. 2018;18:69.
- Febrianto J, Kosasih AN, Sunarso J, et al. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater. 2009;162(2-3): 616-645. https://doi.org/10.1016/j.jhazmat.2008.06.042
- Reddi AR, Jensen LT, Naranuntarat A, et al. The overlapping roles of manganese and Cu/Zn SOD in oxidative stress protection. Free Radic Biol Med. 2009;46(2):154-162. https://doi.org/10.1016/j.freeradbiomed.2008.09.032
- Wang L, Wang R, Zhan J, et al. High levels of copper retard the growth of Saccharomyces cerevisiae by altering cellular morphology and reducing its potential for ethanolic fermentation. Int J Food Sci Technol. 2021;56(6):2720-2731. https://doi.org/10.1111/ijfs.14903
- Donmez G, Aksu Z. Bioaccumulation of copper(II) and nickel(II) by the non-adapted and adapted growing Candida sp. Water Res. 2001;35(6): 1425-1434. https://doi.org/10.1016/S0043-1354(00)00394-8
- Zhenggang X, Yi D, Huimin H, et al. Biosorption characteristics of Mn (II) by Bacillus cereus strain HM-5 isolated from soil contaminated by manganese ore. Pol J Environ Stud. 2018;28(1):463-472. https://doi.org/10.15244/pjoes/84838
- C,olak F, Olgun A, Atar N, et al. Heavy metal resistances and biosorptive behaviors of Paenibacillus polymyxa: batch and column studies. J Ind Eng Chem. 2013;19(3):863-869. https://doi.org/10.1016/j.jiec.2012.11.001
- Dursun AY, Uslu G, Cuci Y, et al. Bioaccumulation of copper (II), lead (II) and chromium (VI) by growing Aspergillus niger. Process Biochem. 2003;38(12):1647-1651. https://doi.org/10.1016/S0032-9592(02)00075-4
- Ha J, Gelabert A, Spormann AM, et al. Role of extracellular polymeric substances in metal ion complexation on Shewanella oneidensis: batch uptake, thermodynamic modeling, ATR-FTIR, and EXAFS study. Geochim Cosmochim Acta. 2010; 74(1):1-15. https://doi.org/10.1016/j.gca.2009.06.031
- Nguyen N-T, Sekhon SS, Yoon J, et al. Effect of heavy metals, pesticides and pharmaceuticals on yeast's vacuoles as a biomarker for toxic detection. Mol Cell Toxicol. 2017;13(3):287-294. https://doi.org/10.1007/s13273-017-0032-7
- Machado MD, Soares EV. Modification of cell volume and proliferative capacity of Pseudokirchneriella subcapitata cells exposed to metal stress. Aquat Toxicol. 2014;147:1-6. https://doi.org/10.1016/j.aquatox.2013.11.017
- Nishikawa K, Yamakoshi Y, Uemura I, et al. Ultrastructural changes in Chlamydomonas acidophila (chlorophyta) induced by heavy metals and polyphosphate metabolism. FEMS Microbiol Ecol. 2003;44(2):253-259. https://doi.org/10.1016/S0168-6496(03)00049-7
- Hasan HA, Abdullah SRS, Kofli NT, et al. Biosorption of manganese in drinking water by isolated bacteria. J Appl Sci. 2010;10(21): 2653-2657. https://doi.org/10.3923/jas.2010.2653.2657
- Ezzouhri L, Ruiz E, Castro E, et al. Mechanisms of lead uptake by fungal biomass isolated from heavy metals habitats. Afinidad. 2010;67:269007.
- Dursun AY, Uslu G, Tepe O, et al. A comparative investigation on the bioaccumulation of heavy metal ions by growing Rhizopus arrhizus and Aspergillus niger. Biochem Eng J. 2003;15(2):87-92. https://doi.org/10.1016/S1369-703X(02)00187-0
- Tastan BE, Ertugrul S, Donmez G. Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor. Bioresour Technol. 2010; 101(3):870-876. https://doi.org/10.1016/j.biortech.2009.08.099
- Donmez G, Aksu Z. The effect of copper (II) ions on the growth and bioaccumulation properties of some yeasts. Process Biochem. 1999;35(1-2): 135-142. https://doi.org/10.1016/S0032-9592(99)00044-8
- Do TA, Sakai T, Kishida M, et al. Isolation and characterization of a variant manganese resistant strain of Saccharomyces cerevisiae. Biocontrol Sci. 2016;21(4):253-260. https://doi.org/10.4265/bio.21.253
- Batic M, Raspor P. Uptake and bioaccumulation of Cr (III) in yeast Saccharomyces cerevisiae. Food Technol Biotechnol. 1998;36:291-297.
- Das D, Charumathi D, Das N. Bioaccumulation of the synthetic dye basic violet 3 and heavy metals in single and binary systems by Candida tropicalis grown in a sugarcane bagasse extract medium: modelling optimal conditions using response surface methodology (RSM) and inhibition kinetics. J Hazard Mater. 2011;186(2-3):1541-1552. https://doi.org/10.1016/j.jhazmat.2010.12.038
- Khan Z, Rehman A, Hussain SZ. Resistance and uptake of cadmium by yeast, Pichia hampshirensis 4Aer, isolated from industrial effluent and its potential use in decontamination of wastewater. Chemosphere. 2016;159:32-43. https://doi.org/10.1016/j.chemosphere.2016.05.076
- Kadukova J, Vircikova E. Comparison of differences between copper bioaccumulation and biosorption. Environ Int. 2005;31(2):227-232. https://doi.org/10.1016/j.envint.2004.09.020
- Barboza NR, Guerra -SR, Leao VA. Mechanisms of manganese bioremediation by microbes: an overview. J Chem Technol Biotechnol. 2016;91(11): 2733-2739. https://doi.org/10.1002/jctb.4997
- Vijayaraghavan K, Winnie HYN, Balasubramanian R. Biosorption characteristics of crab shell particles for the removal of manganese (II) and zinc (II) from aqueous solutions. Desalination. 2011; 266(1-3):195-200. https://doi.org/10.1016/j.desal.2010.08.026
- Han R, Li H, Li Y, et al. Biosorption of copper and lead ions by waste beer yeast. J Hazard Mater. 2006;137(3):1569-1576. https://doi.org/10.1016/j.jhazmat.2006.04.045
- Wang J-Y, Cui H, Cui C-W, et al. Biosorption of copper (II) from aqueous solutions by Aspergillus niger-treated rice straw. Ecol Eng. 2016;95: 793-799. https://doi.org/10.1016/j.ecoleng.2016.07.019
- Luk CHJ, Yip J, Yuen CWM, et al. Biosorption performance of encapsulated Candida krusei for the removal of copper(II)). Sci Rep. 2017;7(1): 2159-2159. https://doi.org/10.1038/s41598-017-02350-7
- Chen X, Tian Z, Cheng H, et al. Adsorption process and mechanism of heavy metal ions by different components of cells, using yeast (Pichia pastoris) and Cu 2+ as biosorption models. RSC Adv. 2021;11(28):17080-17091. https://doi.org/10.1039/D0RA09744F
- Singh S, Kumar V, Datta S, et al. Current advancement and future prospect of biosorbents for bioremediation. Sci Total Environ. 2020;709:135895. https://doi.org/10.1016/j.scitotenv.2019.135895
- Wierzba S. Biosorption of nickel (II) and zinc (II) from aqueous solutions by the biomass of yeast Yarrowia lipolytica. Polish J Chem Technol. 2017; 19(1):1-10. https://doi.org/10.1515/pjct-2017-0001
- Salvadori MR, Ando RA, Oller do Nascimento CA, et al. Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian amazonia. PLoS One. 2014;9(1):e87968. https://doi.org/10.1371/journal.pone.0087968
- Sahan T, Ceylan H, Sahiner N, et al. Optimization of removal conditions of copper ions from aqueous solutions by trametes versicolor. Bioresour Technol. 2010;101(12):4520-4526. https://doi.org/10.1016/j.biortech.2010.01.105
- Omar HH. Biosorption of copper, nickel and manganese using non-living biomass of marine alga, ulva lactuca. Pak J Biol Sci. 2008;11(7):964-973. https://doi.org/10.3923/pjbs.2008.964.973
- Dutta A, Zhou L, Castillo-Araiza CO, et al. Cadmium (II), lead (II), and copper (II) biosorption on baker's yeast (Saccharomyces cerevesiae). J Environ Eng. 2016;142:C6015002. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001041
- Chang J-S, Law R, Chang C-C. Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU21. Water Res. 1997; 31(7):1651-1658. https://doi.org/10.1016/S0043-1354(97)00008-0
- Amirnia S, Ray MB, Margaritis A. Heavy metals removal from aqueous solutions using Saccharomyces cerevisiae in a novel continuous bioreactor-biosorption system. Chem Eng J. 2015; 264:863-872. https://doi.org/10.1016/j.cej.2014.12.016
- Hou Y, Cheng K, Li Z, et al. Biosorption of cadmium and manganese using free cells of Klebsiella sp. isolated from waste water. PLoS One. 2018; 13(5):e0198309. https://doi.org/10.1371/journal.pone.0198309
- Sayyadi S, Ahmady-Asbchin S, Kamali K. Biosorption of Cd(II) and Cs(I) from aqueous solution by live and dead cells of Saccharomyces carlsbergensis PTCC 5051. Environ Technol. 2018; 39(4):450-456. https://doi.org/10.1080/09593330.2017.1302003
- Torab-Mostaedi M, Asadollahzadeh M, Hemmati A, et al. Equilibrium, kinetic, and thermodynamic studies for biosorption of cadmium and nickel on grapefruit peel. J Taiwan Inst Chem Eng. 2013; 44(2):295-302. https://doi.org/10.1016/j.jtice.2012.11.001
- Savastru E, Zamfir C-I, Diaconu M, et al. Biosorption of Cu (II) Ions from aqueous solution on Saccharomyces cerevisiae biomass: isotherm and kinetics modelling. 2019 E-Health Bioeng Conf. IEEE; 2019. p. 1-4.
- Kareem SO, Omeike SO, Balogun SA, et al. Removal of Mn (II) and Fe (II) by Aspergillus sp. TU-GM14 immobilized on Detarium microcarpum matrix. Glob Nest J. 2014;16:597-608. https://doi.org/10.30955/gnj.001239
- Khalilnezhad R, Olya ME, Khosravi M, et al. Manganese biosorption from aqueous solution by Penicillium camemberti biomass in the batch and fix bed reactors: a kinetic study. Appl Biochem Biotechnol. 2014;174(5):1919-1934. https://doi.org/10.1007/s12010-014-1076-y
- Li Q, Wu S, Liu G, et al. Simultaneous biosorption of cadmium (II) and lead (II) ions by pretreated biomass of Phanerochaete chrysosporium. Sep Purif Technol. 2004;34(1-3):135-142. https://doi.org/10.1016/S1383-5866(03)00187-4
- Li C-C, Chung H-P, Wen H-W, et al. The radiation resistance and cobalt biosorption activity of yeast strains isolated from the lanyu low-level radioactive waste repository in Taiwan. J Environ Radioact. 2015;146:80-87. https://doi.org/10.1016/j.jenvrad.2015.04.010
- Li C, Yu J, Wang D, et al. Efficient removal of zinc by multi-stress-tolerant yeast Pichia kudriavzevii A16. Bioresour Technol. 2016;206:43-49. https://doi.org/10.1016/j.biortech.2016.01.057
- Honfi K, Talos K, Konig-Peter A, et al. Copper (II) and phenol adsorption by cell surface treated Candida tropicalis cells in aqueous suspension. Water Air Soil Pollut. 2016;227:61. https://doi.org/10.1007/s11270-016-2751-0
- Van Nguyen P, Plocek V, Vachova L, et al. Glucose, Cyc8p and Tup1p regulate biofilm formation and dispersal in wild Saccharomyces cerevisiae. NPJ Biofilms Microbiomes. 2020;6(1):7-10. https://doi.org/10.1038/s41522-020-0118-1
- Hirayama T, Miyazaki T, Ito Y, et al. Virulence assessment of six major pathogenic Candida species in the mouse model of invasive candidiasis caused by fungal translocation. Sci Rep. 2020; 10(1):3814-3810. https://doi.org/10.1038/s41598-020-60792-y