DOI QR코드

DOI QR Code

Addition of Various Cellulosic Components to Bacterial Nanocellulose: A Comparison of Surface Qualities and Crystalline Properties

  • Bang, Won Yeong (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Kim, Dong Hyun (Department of Biotechnology, Graduate School, Korea University) ;
  • Kang, Mi Dan (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Yang, Jungwoo (Ildong Bioscience) ;
  • Huh, Taelin (School of Life Science and Biotechnology, Kyungpook National University) ;
  • Lim, Young Woon (School of Biological Sciences and Institution of Microbiology, Seoul National University) ;
  • Jung, Young Hoon (School of Food Science and Biotechnology, Kyungpook National University)
  • Received : 2021.06.23
  • Accepted : 2021.07.21
  • Published : 2021.10.28

Abstract

Bacterial nanocellulose (BNC) is a biocompatible material with a lot of potential. To make BNC commercially feasible, improvements in its production and surface qualities must be made. Here, we investigated the in situ fermentation and generation of BNC by addition of different cellulosic substrates such as Avicel and carboxymethylcellulose (CMC) and using Komagataeibacter sp. SFCB22-18. The addition of cellulosic substrates improved BNC production by a maximum of about 5 times and slightly modified its structural properties. The morphological and structural properties of BNC were investigated by using Fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy and X-ray diffraction. Furthermore, a type-A cellulose-binding protein derived from Clostridium thermocellum, CtCBD3, was used in a novel biological analytic approach to measure the surface crystallinity of the BNC. Because Avicel and CMC may adhere to microfibrils during BNC synthesis or crystallization, cellulose-binding protein could be a useful tool for identifying the crystalline properties of BNC with high sensitivity.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through the High Value-added Food Technology Development Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA)(Grant No. 321028-5). This work was also supported by the Korea Forestry Promotion Institute (Grant No. 2020225C10-2122-AC01).

References

  1. Arevalo-Gallegos A, Ahmad Z, Asgher M, Parra-Saldivar R, Iqbal HM. 2017. Lignocellulose: a sustainable material to produce value-added products with a zero waste approach-a review. Int. J. Biol. Macromol. 99: 308-318. https://doi.org/10.1016/j.ijbiomac.2017.02.097
  2. Calvino C, Macke N, Kato R, Rowan SJ. 2020. Development, processing and applications of bio-sourced cellulose nanocrystal composites. Prog. Polym. Sci. 103: 101221. https://doi.org/10.1016/j.progpolymsci.2020.101221
  3. Mokhena T John M. 2020. Cellulose nanomaterials: new generation materials for solving global issues. Cellulose 27: 1149-1194. https://doi.org/10.1007/s10570-019-02889-w
  4. Mokhena T, Sefadi J, Sadiku E, John M, Mochane M, Mtibe A. 2018. Thermoplastic processing of PLA/cellulose nanomaterials composites. Polymers 10: 1363. https://doi.org/10.3390/polym10121363
  5. Sulaeva I, Henniges U, Rosenau T, Potthast A. 2015. Bacterial cellulose as a material for wound treatment: properties and modifications. A review. Biotechnol. Adv. 33: 1547-1571. https://doi.org/10.1016/j.biotechadv.2015.07.009
  6. Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan D, Brittberg M, et al. 2005. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26: 419-431. https://doi.org/10.1016/j.biomaterials.2004.02.049
  7. Badshah M, Ullah H, Khan AR, Khan S, Park JK, Khan T. 2018. Surface modification and evaluation of bacterial cellulose for drug delivery. Int. J. Biol. Macromol. 113: 526-533. https://doi.org/10.1016/j.ijbiomac.2018.02.135
  8. Choi SM, Shin EJ. 2020. The nanofication and functionalization of bacterial cellulose and its applications. Nanomaterials 10: 406. https://doi.org/10.3390/nano10030406
  9. Oprea M, Voicu SI. 2020. Recent advances in composites based on cellulose derivatives for biomedical applications. Carbohydr. Polym. 247: 116683. https://doi.org/10.1016/j.carbpol.2020.116683
  10. van Rie J, Thielemans W. 2017. Cellulose-gold nanoparticle hybrid materials. Nanoscale 9: 8525-8554. https://doi.org/10.1039/C7NR00400A
  11. Fernandes IdAA, Pedro AC, Ribeiro VR, Bortolini DG, Ozaki MSC, Maciel GM, et al. 2020. Bacterial cellulose: from production optimization to new applications. Int. J. Biol. Macromol. 164: 2598-2611. https://doi.org/10.1016/j.ijbiomac.2020.07.255
  12. Gao H, Sun Q, Han Z, Li J, Liao B, Hu L, et al. 2020. Comparison of bacterial nanocellulose produced by different strains under static and agitated culture conditions. Carbohydr. Polym. 227: 115323. https://doi.org/10.1016/j.carbpol.2019.115323
  13. Jacek P, Dourado F, Gama M, Bielecki S. 2019. Molecular aspects of bacterial nanocellulose biosynthesis. Microb. Biotechnol. 12: 633-649. https://doi.org/10.1111/1751-7915.13386
  14. Yamada Y, Hosono R, Lisdyanti P, Widyastuti Y, Saono S, Uchimura T, et al. 1999. Identification of acetic acid bacteria isolated from Indonesian sources, especially of isolates classified in the genus Gluconobacter. J. Gen. Appl. Microbiol. 45: 23-28. https://doi.org/10.2323/jgam.45.23
  15. Nguyen VT, Flanagan B, Gidley MJ, Dykes GA. 2008. Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha. Curr. Microbiol. 57: 449-453. https://doi.org/10.1007/s00284-008-9228-3
  16. Okiyama A, Motoki M, Yamanaka S. 1992. Bacterial cellulose II. Processing of the gelatinous cellulose for food materials. Food Hydrocoll 6: 479-487. https://doi.org/10.1016/S0268-005X(09)80033-7
  17. Park MS, Jung YH, Oh SY, Kim MJ, Bang WY, Lim YW. 2019. Cellulosic nanomaterial production via fermentation by Komagataeibacter sp. SFCB22-18 isolated from ripened persimmons. J. Microbiol. Biotechnol. 29: 617-624. https://doi.org/10.4014/jmb.1801.01005
  18. Du R, Zhao F, Peng Q, Zhou Z, Han Y. 2018. Production and characterization of bacterial cellulose produced by Gluconacetobacter xylinus isolated from Chinese persimmon vinegar. Carbohydr. Polym. 194: 200-207. https://doi.org/10.1016/j.carbpol.2018.04.041
  19. Dayal MS, Catchmark JM. 2016. Mechanical and structural property analysis of bacterial cellulose composites. Carbohydr. Polym. 144: 447-453. https://doi.org/10.1016/j.carbpol.2016.02.055
  20. Chen HH, Chen LC, Huang HC, Lin SB (2011) In situ modification of bacterial cellulose nanostructure by adding CMC during the growth of Gluconacetobacter xylinus. Cellulose 18: 1573-1583. https://doi.org/10.1007/s10570-011-9594-z
  21. Niamsap T, Lam NT, Sukyai P. 2019. Production of hydroxyapatite-bacterial nanocellulose scaffold with assist of cellulose nanocrystals. Carbohydr. Polym. 205: 159-166. https://doi.org/10.1016/j.carbpol.2018.10.034
  22. Wan Y.Z, Hong L, Jia SR, Huang Y, Zhu Y, Wang YL, et al. 2006. Synthesis and characterization of hydroxyapatite-bacterial cellulose nanocomposites. Compos. Sci. Technol. 66: 1825-1832. https://doi.org/10.1016/j.compscitech.2005.11.027
  23. Gea S, Bilotti E, Reynolds CT, Soykeabkeaw N, Peijs T. 2010. Bacterial cellulose-poly (vinyl alcohol) nanocomposites prepared by an in-situ process. Mater. Lett. 64: 901-904. https://doi.org/10.1016/j.matlet.2010.01.042
  24. Lee HC, Zhao X. 1999. Effects of mixing conditions on the production of microbial cellulose by Acetobacter xylinum. Biotechnol. Bioprocess Eng. 4: 41-45. https://doi.org/10.1007/BF02931912
  25. Cheng KC, Catchmark JM, Demirci A. 2009. Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose 16: 1033-1045. https://doi.org/10.1007/s10570-009-9346-5
  26. Kim J, Cai Z, Chen Y. 2010. Biocompatible bacterial cellulose composites for biomedical application J. Nanotechnol. Eng. Med. 1: 011006. https://doi.org/10.1115/1.4000062
  27. Kljun A, Benians TA, Goubet F, Meulewaeter F, Knox JP, Blackburn RS. 2011. Comparative analysis of crystallinity changes in cellulose I polymers using ATR-FTIR, X-ray diffraction, and carbohydrate-binding module probes. Biomacromolecules 12: 4121-4126. https://doi.org/10.1021/bm201176m
  28. Gao S, You C, Renneckar S, Bao J, Zhang YHP. 2014. New insights into enzymatic hydrolysis of heterogeneous cellulose by using carbohydrate-binding module 3 containing GFP and carbohydrate-binding module 17 containing CFP. Biotechnol. Biofuels 7: 24. https://doi.org/10.1186/1754-6834-7-24
  29. Foner H, Adan N. 1983. The characterization of papers by X-ray diffraction (XRD): measurement of cellulose crystallinity and determination of mineral composition. J. Forensic. Sci. Soc. 23: 313-321. https://doi.org/10.1016/S0015-7368(83)72269-3
  30. Jung YH, Kim IJ, Han JI, Choi IG, Kim KH. 2011. Aqueous ammonia pretreatment of oil palm empty fruit bunches for ethanol production. Bioresour. Technol. 102: 9806-9809. https://doi.org/10.1016/j.biortech.2011.07.050
  31. Benchabane A, Bekkour K. 2008. Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid. Polym. Sci. 286: 1173. https://doi.org/10.1007/s00396-008-1882-2
  32. Lin SP, Liu CT, Hsu KD, Hung YT, Shih TY, Cheng KC. 2016. Production of bacterial cellulose with various additives in a PCS rotating disk bioreactor and its material property analysis. Cellulose 23: 367-377. https://doi.org/10.1007/s10570-015-0855-0
  33. Cheng KC, Catchmark JM, Demirci A. 2009. Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose 16: 1033-1045. https://doi.org/10.1007/s10570-009-9346-5
  34. Cheng KC, Catchmark JM, Demirci A. 2011. Effects of CMC Addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Biomacromolecules 12: 730-736. https://doi.org/10.1021/bm101363t
  35. Ishida T, Mitarai M, Sugano Y, Shoda M. 2003. Role of water-soluble polysaccharides in bacterial cellulose production. Biotechnol. Bioeng. 83: 474-478. https://doi.org/10.1002/bit.10690
  36. Bae S, Sugano Y, Shoda M. 2004. Improvement of bacterial cellulose production by addition of agar in a jar fermentor. J. Biosci. Bioeng. 97: 33-38. https://doi.org/10.1016/S1389-1723(04)70162-0
  37. Zhou L, Sun D, Hu L, Li Y, Yang J. 2007. Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J. Ind. Microbiol. Biotechnol. 34: 483. https://doi.org/10.1007/s10295-007-0218-4
  38. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40: 3941-3994. https://doi.org/10.1039/c0cs00108b
  39. Grande CJ, Torres FG, Gomez CM, Bano MC. 2009. Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater. 5: 1605-1615. https://doi.org/10.1016/j.actbio.2009.01.022
  40. Auta R, Adamus G, Kwiecien M, Radecka I, Hooley P. 2017. Production and characterization of bacterial cellulose before and after enzymatic hydrolysis. Afr. J. Biotechnol. 16: 470-482.
  41. Yamamoto H, Horii F, Hirai A. 1996. In situ crystallization of bacterial cellulose II. Influences of different polymeric additives on the formation of celluloses I α and I β at the early stage of incubation. Cellulose 3: 229-242. https://doi.org/10.1007/BF02228804
  42. Fengel D, Ludwig M. 1991. Possibilities and limits of the FTIR spectroscopy for the characterization of cellulose. Pt. 1: Comparison of various cellulose fibres and bacteria cellulose, Papier (Germany, FR)
  43. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK. 2010. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 3: 10. https://doi.org/10.1186/1754-6834-3-10
  44. Haigler CH, Brown RM, Benziman M. 1980. Calcofluor white ST alters the in vivo assembly of cellulose microfibrils. Science 210: 903-906. https://doi.org/10.1126/science.7434003
  45. Tokoh C, Takabe K, Fujita M, Saiki H. 1998. Cellulose synthesized by Acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 5: 249-261. https://doi.org/10.1023/A:1009211927183
  46. Ling Z, Chen S, Zhang X, Takabe K, Xu F. 2017. Unraveling variations of crystalline cellulose induced by ionic liquid and their effects on enzymatic hydrolysis. Sci. Rep. 7: 10230. https://doi.org/10.1038/s41598-017-09885-9
  47. Liu H, Cheng G, Kent M, Stavila V, Simmons BA, Sale KL, et al. 2012. Simulations reveal conformational changes of methylhydroxyl groups during dissolution of cellulose Iβ in ionic liquid 1-ethyl-3-methylimidazolium acetate. J. Phys. Chem. B 116: 8131-8138. https://doi.org/10.1021/jp301673h
  48. Aissa K, Novy V, Nielsen F, Saddler J. 2018. Use of carbohydrate binding modules to elucidate the relationship between fibrillation, hydrolyzability, and accessibility of cellulosic substrates. ACS Sustain Chem. Eng. 7: 1113-1119.
  49. Novy V, Aissa K, Nielsen F, Straus SK, Ciesielski P, Hunt CG, et al. 2019. Quantifying cellulose accessibility during enzyme-mediated deconstruction using 2 fluorescence-tagged carbohydrate-binding modules. Proc. Natl. Acad. Sci. USA 116: 22545-22551. https://doi.org/10.1073/pnas.1912354116
  50. Huang HC, Chen LC, Lin SB, Hsu CP, Chen HH. 2010. In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Bioresour. Technol. 101: 6084-6091. https://doi.org/10.1016/j.biortech.2010.03.031