DOI QR코드

DOI QR Code

Safety Assessment of Lactiplantibacillus (formerly Lactobacillus) plantarum Q180

  • Kwon, Yoo Jin (Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO)) ;
  • Chun, Byung Hee (Department of Life Science, Chung-Ang University) ;
  • Jung, Hye Su (Department of Life Science, Chung-Ang University) ;
  • Chu, Jaeryang (Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO)) ;
  • Joung, Hyunchae (Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO)) ;
  • Park, Sung Yurb (Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO)) ;
  • Kim, Byoung Kook (Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO)) ;
  • Jeon, Che Ok (Department of Life Science, Chung-Ang University)
  • Received : 2021.06.23
  • Accepted : 2021.08.09
  • Published : 2021.10.28

Abstract

The safety of the probiotic strain Q180, which exerts postprandial lipid-lowering effects, was bioinformatically and phenotypically evaluated. The genome of strain Q180 was completely sequenced, and single circular chromosome of 3,197,263 bp without any plasmid was generated. Phylogenetic and related analyses using16S rRNA gene and whole-genome sequences revealed that strain Q180 is a member of Lactiplantibacillus (Lp., formerly Lactobacillus) plantarum. Antimicrobial resistance (AMR) genes were bioinformatically analyzed using all Lp. plantarum genomes available in GenBank, which showed that AMR genes are present differently depending on Lp. plantarum strains. Bioinformatic analysis demonstrated that some mobile genetic elements such as prophages and insertion sequences were identified in the genome of strain Q180, but because they did not contain harmful genes such as AMR genes and virulence factor (VF)- and toxin-related genes, it was suggested that there is no transferability of harmful genes. The minimum inhibition concentrations of seven tested antibiotics suggested by the European Food Safety Authority guidelines were slightly lower than or equal to the microbiological cut-off values for Lp. plantarum. Strain Q180 did not show hemolytic and gelatinase activities and biogenic amine-producing ability. Taken together, this study demonstrated the safety of strain Q180 in terms of absence of AMR genes and VF- and toxin-related genes as a probiotic strain.

Keywords

References

  1. Additives EPo, Feed PoSuiA. 2012. Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 10: 2740.
  2. Li J, Ren F, Gu H, Li X, Gan B. 2011. Safety evaluation in vitro of Enterococcus durans from Tibetan traditional fermented yak milk. J. Microbiol. 49: 721-728. https://doi.org/10.1007/s12275-011-1062-9
  3. Lee DY, Seo Y-S, Rayamajhi N, Kang ML, Lee SI, Yoo HS. 2009. Isolation, characterization, and evaluation of wild isolates of Lactobacillus reuteri from pig feces. J. Microbiol. 47: 663-672. https://doi.org/10.1007/s12275-009-0124-8
  4. De Vries MC, Vaughan EE, Kleerebezem M, de Vos WM. 2006. Lactobacillus plantarum-survival, functional and potential probiotic properties in the human intestinal tract. Int. Dairy J. 16: 1018-1028. https://doi.org/10.1016/j.idairyj.2005.09.003
  5. Pique N, Berlanga M, Minana-Galbis D. 2019. Health benefits of heat-killed (Tyndallized) probiotics: An overview. Int. J. Mol. Sci. 20: 2534. https://doi.org/10.3390/ijms20102534
  6. Liu Y-W, Liong M-T, Tsai Y-C. 2018. New perspectives of Lactobacillus plantarum as a probiotic: The gut-heart-brain axis. J. Microbiol. 56: 601-613. https://doi.org/10.1007/s12275-018-8079-2
  7. Zhang M, Jiang Y, Cai M, Yang Z. 2020. Characterization and ACE inhibitory activity of fermented milk with probiotic Lactobacillus plantarum K25 as analyzed by GC-MS-based metabolomics approach. J. Microbiol. Biotechnol. 30: 903-911. https://doi.org/10.4014/jmb.1911.11007
  8. Zheng J, Wittouck S, Salvetti E, Franz CM, Harris HM, Mattarelli P, et al. 2020. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 70: 2782-2858. https://doi.org/10.1099/ijsem.0.004107
  9. Mukerji P, Roper JM, Stahl B, Smith AB, Burns F, Rae JC, et al. 2016. Safety evaluation of AB-LIFE®(Lactobacillus plantarum CECT 7527, 7528 and 7529): Antibiotic resistance and 90-day repeated-dose study in rats. Food Chem. Toxicol. 92: 117-128. https://doi.org/10.1016/j.fct.2016.03.018
  10. Olek A, Woynarowski M, Ahren IL, Kierkus J, Socha P, Larsson N, et al. 2017. Efficacy and safety of Lactobacillus plantarum DSM 9843 (LP299V) in the prevention of antibiotic-associated gastrointestinal symptoms in children-randomized, double-blind, placebo-controlled study. J. Pediatr. 186: 82-86. https://doi.org/10.1016/j.jpeds.2017.03.047
  11. Gotteland M, Cires MJ, Carvallo C, Vega N, Ramirez MA, Morales P, et al. 2014. Probiotic screening and safety evaluation of Lactobacillus strains from plants, artisanal goat cheese, human stools, and breast milk. J. Med. Food 17: 487-495. https://doi.org/10.1089/jmf.2013.0030
  12. Goel A, Halami PM, Tamang JP. 2020. Genome analysis of Lactobacillus plantarum isolated from some Indian fermented foods for bacteriocin production and probiotic marker genes. Front. Microbiol. 11: 40. https://doi.org/10.3389/fmicb.2020.00040
  13. Park DM, Bae J-H, Kim MS, Kim H, Kang SD, Shim S, et al. 2019. Suitability of Lactobacillus plantarum SPC-SNU 72-2 as a probiotic starter for sourdough fermentation. J. Microbiol. Biotechnol. 29: 1729-1738. https://doi.org/10.4014/jmb.1907.07039
  14. Gueimonde M, Sanchez B, de Los Reyes-Gavilan CG, Margolles A. 2013. Antibiotic resistance in probiotic bacteria. Front. Microbiol. 4: 202. https://doi.org/10.3389/fmicb.2013.00202
  15. Devirgiliis C, Zinno P, Perozzi G. 2013. Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species. Front. Microbiol. 4: 301. https://doi.org/10.3389/fmicb.2013.00301
  16. Abriouel H, Munoz MdCC, Lerma LL, Montoro BP, Bockelmann W, Pichner R, et al. 2015. New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Res. Int. 78: 465-481. https://doi.org/10.1016/j.foodres.2015.09.016
  17. Campedelli I, Mathur H, Salvetti E, Clarke S, Rea MC, Torriani S, et al. 2019. Genus-wide assessment of antibiotic resistance in Lactobacillus spp. Appl. Environ. Microbiol. 85: e01738-18
  18. Chokesajjawatee N, Santiyanont P, Chantarasakha K, Kocharin K, Thammarongtham C, Lertampaiporn S, et al. 2020. Safety assessment of a nham starter culture Lactobacillus plantarum BCC9546 via whole-genome analysis. Sci. Rep. 10: 10241. https://doi.org/10.1038/s41598-020-66857-2
  19. Klarin B, Larsson A, Molin G, Jeppsson B. 2019. Susceptibility to antibiotics in isolates of Lactobacillus plantarum RAPD-type Lp299v, harvested from antibiotic treated, critically ill patients after administration of probiotics. Microbiologyopen 8: e00642. https://doi.org/10.1002/mbo3.642
  20. Shao Y, Zhang W, Guo H, Pan L, Zhang H, Sun T. 2015. Comparative studies on antibiotic resistance in Lactobacillus casei and Lactobacillus plantarum. Food Control 50: 250-258. https://doi.org/10.1016/j.foodcont.2014.09.003
  21. Park S-Y, Cho S-A, Kim S-H, Lim S-D. 2014. Physiological characteristics and anti-obesity effect of Lactobacillus plantarum Q180 isolated from feces. Korean J. Food Sci. Anim. Resour. 34: 647-655. https://doi.org/10.5851/KOSFA.2014.34.5.647
  22. Kwon J, Kim B, Lee C, Joung H, Kim B-K, Choi IS, et al. 2020. Comprehensive amelioration of high-fat diet-induced metabolic dysfunctions through activation of the PGC-1α pathway by probiotics treatment in mice. PLoS One 15: e0228932. https://doi.org/10.1371/journal.pone.0228932
  23. Park YE, Kim MS, Shim KW, Kim Y-I, Chu J, Kim B-K, et al. 2020. Effects of Lactobacillus plantarum Q180 on postprandial lipid levels and intestinal environment: A double-blind, randomized, placebo-controlled, parallel trial. Nutrients 12: 255. https://doi.org/10.3390/nu12010255
  24. Baek JH, Kim KH, Moon JY, Yeo S-H, Jeon CO. 2020. Acetobacter oryzoeni sp. nov., isolated from Korean rice wine vinegar. Int. J. Syst. Evol. Microbiol. 70: 2026-2033. https://doi.org/10.1099/ijsem.0.004008
  25. Berlin K, Koren S, Chin C-S, Drake JP, Landolin JM, Phillippy AM. 2015. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat. Biotechnol. 33: 623-630. https://doi.org/10.1038/nbt.3238
  26. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9: e112963. https://doi.org/10.1371/journal.pone.0112963
  27. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, et al. 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37: 141-145.
  28. Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
  29. Na S-I, Kim YO, Yoon S-H, Ha S-m, Baek I, Chun J. 2018. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J. Microbiol. 56: 280-285. https://doi.org/10.1007/s12275-018-8014-6
  30. Lee I, Kim YO, Park S-C, Chun J. 2016. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66: 1100-1103. https://doi.org/10.1099/ijsem.0.000760
  31. Meier-Kolthoff JP, Auch AF, Klenk H-P, Goker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60. https://doi.org/10.1186/1471-2105-14-60
  32. Grant JR, Stothard P. 2008. The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res. 36: 181-184.
  33. Huerta-Cepas J, Szklarczyk D, Heller D, Hernandez-Plaza A, Forslund SK, Cook H, et al. 2019. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47: 309-314.
  34. Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12: 59-60. https://doi.org/10.1038/nmeth.3176
  35. Alcock BP, Raphenya AR, Lau TT, Tsang KK, Bouchard M, Edalatmand A, et al. 2020. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 48: 517-525. https://doi.org/10.1093/nar/gkz1136
  36. Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M, Landraud L, et al. 2014. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 58: 212-220. https://doi.org/10.1128/AAC.01310-13
  37. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, et al. 2020. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 75: 3491-3500. https://doi.org/10.1093/jac/dkaa345
  38. Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, et al. 2005. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res. 33: 325-328. https://doi.org/10.1093/nar/gki177
  39. Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. 2016. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44: 16-21.
  40. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. 2006. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 34: 32-36. https://doi.org/10.1093/nar/gkj409
  41. Mercanti DJ, Carminati D, Reinheimer JA, Quiberoni A. 2011. Widely distributed lysogeny in probiotic lactobacilli represents a potentially high risk for the fermentative dairy industry. Int. J. Food Microbiol. 144: 503-510. https://doi.org/10.1016/j.ijfoodmicro.2010.11.009
  42. Binetti AG, Del Rio B, Martin MC, Alvarez MA. 2005. Detection and characterization of Streptococcus thermophilus bacteriophages by use of the antireceptor gene sequence. Appl. Environ. Microbiol. 71: 6096-6103. https://doi.org/10.1128/AEM.71.10.6096-6103.2005
  43. Clinical and laboratory standards institute. 2012. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard CLSI document M07-A9. Wayne, PA, USA.
  44. Beecher DJ, Schoeni JL, Wong A. 1995. Enterotoxic activity of hemolysin BL from Bacillus cereus. Infect. Immun. 63: 4423-4428. https://doi.org/10.1128/iai.63.11.4423-4428.1995
  45. Kim KH, Lee SH, Chun BH, Jeong SE, Jeon CO. 2019. Tetragenococcus halophilus MJ4 as a starter culture for repressing biogenic amine (cadaverine) formation during saeu-jeot (salted shrimp) fermentation. Food Microbiol. 82: 465-473. https://doi.org/10.1016/j.fm.2019.02.017
  46. Bruckner H, Flassig S, Kirschbaum J. 2012. Determination of biogenic amines in infusions of tea (Camellia sinensis) by HPLC after derivatization with 9-fluorenylmethoxycarbonyl chloride (Fmoc-Cl). Amino Acids 42: 877-885. https://doi.org/10.1007/s00726-011-1003-2
  47. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, et al. 2018. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 68: 461-466. https://doi.org/10.1099/ijsem.0.002516
  48. Domig KJ, Zycka-Krzesinska J, Bardowski J, Morelli L. 2008. Molecular assessment of erythromycin and tetracycline resistance genes in lactic acid bacteria and bifidobacteria and their relation to the phenotypic resistance. Int. J. Probiotics Prebiotics 3: 271-280.
  49. Hummel AS, Hertel C, Holzapfel WH, Franz CM. 2007. Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Appl. Environ. Microbiol. 73: 730-739. https://doi.org/10.1128/AEM.02105-06
  50. Mayrhofer S, Van Hoek AH, Mair C, Huys G, Aarts HJ, Kneifel W, et al. 2010. Antibiotic susceptibility of members of the Lactobacillus acidophilus group using broth microdilution and molecular identification of their resistance determinants. Int. J. Food Microbiol. 144: 81-87. https://doi.org/10.1016/j.ijfoodmicro.2010.08.024
  51. Lahtinen SJ, Boyle RJ, Margolles A, Frias R, Gueimonde M. 2009. Safety assessment of probiotics. Prebiotics probiotics Sci. Technol. Springer-Verlag press, Berlin.
  52. Cebeci A, Gurakan C. 2003. Properties of potential probiotic Lactobacillus plantarum strains. Food Microbiol. 20: 511-518. https://doi.org/10.1016/S0740-0020(02)00174-0
  53. Huycke MM, Spiegel CA, Gilmore MS. 1991. Bacteremia caused by hemolytic, high-level gentamicin-resistant Enterococcus faecalis. Antimicrob. Agents Chemother. 35: 1626-1634. https://doi.org/10.1128/AAC.35.8.1626
  54. Sharma P, Tomar SK, Goswami P, Sangwan V, Singh R. 2014. Antibiotic resistance among commercially available probiotics. Food Res. Int. 57: 176-195. https://doi.org/10.1016/j.foodres.2014.01.025
  55. Florez AB, Egervarn M, Danielsen M, Tosi L, Morelli L, Lindgren S, et al. 2006. Susceptibility of Lactobacillus plantarum strains to six antibiotics and definition of new susceptibility-resistance cutoff values. Microb. Drug Resist. 12: 252-256. https://doi.org/10.1089/mdr.2006.12.252
  56. Zhang F, Gao J, Wang B, Huo D, Wang Z, Zhang J, et al. 2018. Whole-genome sequencing reveals the mechanisms for evolution of streptomycin resistance in Lactobacillus plantarum. J. Dairy Sci. 101: 2867-2874. https://doi.org/10.3168/jds.2017-13323
  57. Facklam RR, Carvalho MdGS, Teixeira LM. 2002. History, taxonomy, biochemical characteristics, and antibiotic susceptibility testing of enterococci. The enterococci: pathogenesis, molecular biology, and antibiotic resistance. ASM press, Washington, D.C., USA.
  58. Zoletti GO, Pereira EM, Schuenck RP, Teixeira LM, Siqueira Jr JF, dos Santos KRN. 2011. Characterization of virulence factors and clonal diversity of Enterococcus faecalis isolates from treated dental root canals. Res. Microbiol. 162: 151-158. https://doi.org/10.1016/j.resmic.2010.09.018
  59. Abouloifa H, Rokni Y, Bellaouchi R, Ghabbour N, Karboune S, Brasca M, et al. 2019. Characterization of probiotic properties of antifungal Lactobacillus strains isolated from traditional fermenting green olives. Probiotics Antimicrob. Proteins 12: 683-696. https://doi.org/10.1007/s12602-019-09543-8
  60. Kenfack CHM, Ngoufack FZ, Kaktcham PM, Wang YR, Zhu T, Yin L. 2018. Safety and antioxidant properties of five probiotic Lactobacillus plantarum strains isolated from the digestive tract of honey bees. Am. J. Microbiol. Res. 6: 1-8. https://doi.org/10.12691/ajmr-6-1-1
  61. Wojcik W, Lukasiewicz M, Puppel K. 2021. Biogenic amines: formation, action and toxicity-a review. J. Sci. Food Agric. 101: 2634-2640. https://doi.org/10.1002/jsfa.10928
  62. Kim S, Huang E, Park S, Holzapfel W, Lim S-D. 2018. Physiological characteristics and anti-obesity effect of Lactobacillus plantarum K10. Korean J. Food Sci. Anim. Resour. 38: 554-569. https://doi.org/10.5851/KOSFA.2018.38.3.554
  63. Gao Y, Liu Y, Sun M, Zhang H, Mu G, Tuo Y. 2020. Physiological function analysis of Lactobacillus plantarum Y44 based on genotypic and phenotypic characteristics. J. Dairy Sci. 103: 5916-5930. https://doi.org/10.3168/jds.2019-18047
  64. Priyanka V, Ramesha A, Gayathri D, Vasudha M. 2020. Molecular characterization of non-biogenic amines producing Lactobacillus plantarum GP11 isolated from traditional pickles using HRESI-MS analysis. J. Food Sci. Technol. 58: 2216-2226.