Validation of Segmental Multi-Frequency Bioelectrical Impedance Analysis based on the Segmental Bioelectrical Impedance analysis in the Elderly Population

분절임피던스를 기준한 분절다주파수 생체임피던스의 일치도 분석

  • Received : 2021.04.09
  • Accepted : 2021.06.24
  • Published : 2021.06.30

Abstract

A frequently used bioimpedance analytical method in Korea is the segmental multi-frequency BIA (SMF-BIA) method, but it is not directly determined at a segmented impedance. This study was to compare SMF-BIA determinations with direct segmented determinations for accuracy and appropriateness of segment parameters. This study is to compare the segment parameters, accuracy and appropriateness of the multi-frequency segmental bioimpedance analysis. To this end, 108 elderly individuals were measured. Segmented bioelectrical measurements obtained from a SMF-BIA (Inbody S10) at 50 kHz and measured with a phase sensitive single frequency device (SF-BIA, bia-101, RJL / akern systems) were compared. The significant difference (%) was demonstrated between single - and multiple frequency determinations of the right upper limb (R = 35.5 ± 6.2%, P < 0.001; Xc = 2.7 ± 7.6%, P < 0.01), left upper limb difference (R= 33. 9 ± 6.0%, P < 0.001; Xc = 2.8 ± 8.3%, P < 0.01), right lower limb difference (R = 18.6 ± 4.3%, P < 0.001; Xc = 25.8 ± 10.0%, P < 0.001), left lower limb difference (R = 18.0 ± 4.7%, P < 0.001; Xc = 31.8%). Of the results determined with the two BIA methods, the impedance measurements of the limbs and whole body showed a high correlation (RA: R = 0. 950, LA: R = 0. 949, RL: R = 0.899, LL: R = 0.88), and in the agreement test, the impedance values of the upper limbs and whole body also showed strong agreement (ICC > 0.9), but in the Xc, the correlation was weak. In conclusion, it was found that although bioimpedance devices had significantly different characteristics and inconsistent cross sectionally, there was a high population level agreement in the upper and lower extremities in determining segmental resistance value changes. But a large error was found on the trunk. Further studies were needed for reducing the error.

분절다중주파수 생체전기임피던스분석법(Segmental Multi-frequency Bioelectrical Impedance)은 최근 체성분 검사를 위해 선호되는 검사법이다. 그러나 SMF-BIA 는 팔다리와 몸통의 임피던스를 추정하는 방법으로 정확한 사용을 위해서는 타당성에 대한 확인이 요구된다. 본 연구는 SMF-BIA 를 인체의 분절임피던스를 기준하여 분절별 임피던스의 추정값에 대한 정확도와 타당도를 검정하는데 목적하였다. 연구목적을 위해 노인 108 명을 대상으로 50kHz 주파수에서 얻어진 분절별 생체전기 임피던스값에 대하여 분절 생체임피던스 측정치 비교하였다. 실험 결과 오른쪽 팔의 저항 값은 준거값에 비해 유의한 수준으로 높았다(저항값: 35.5±6.2%, P < 0.001; 리액턴스: 2.7±7.6%, P < 0.01). 왼쪽팔, 오른쪽 다리와 왼쪽다리의 생체저항값은 준거값에 비해 모두 유의하게 높았다. 몸통의 추정값은 기준값에 비해 가장 큰 차이를 보였다(저항값: 65.4±3.2%, P < 0.001; 리액턴스: 89.2±1.8%, P < 0.001). 두 방법으로 측정한 임피던스 결과에서 사지와 전신의 생체저항값은 높은 상관관계(RA: R = 0.950 LA: R = 0.949 RL: R = 0.899, LL: R = 0.888)를 보였으며, 팔과 다리에서도 유의한 상관관계를 보였다. 따라서 분절다주파수 생체임피던스는 준거와 높은 상관도와 함께 유의한 오차를 보여, 향후 오차 수준을 줄이기 위한 연구가 필요하였다.c

Keywords

References

  1. Kyle, U. G., Bosaeus, I., De Lorenzo, A. D., Deurenberg, P., Elia, M., Gomez, J. M., Heitmann, B. L., Kent-Smith, L., Melchior, J. C., Pirlich, M., Scharfetter, H., Schols, A. M., Pichard, C., & Composition of the ESPEN Working Group (2004). Bioelectrical impedance analysis--part I: review of principles and methods. Clinical nutrition (Edinburgh, Scotland), 23(5), 1226-1243. https://doi.org/10.1016/j.clnu.2004.06.004
  2. Bedogni, G., Marra, M., Bianchi, L., Malavolti, M., Nicolai, E., De Filippo, E., & Scalfi, L. (2003). Comparison of bioelectrical impedance analysis and dual-energy X-ray absorptiometry for the assessment of appendicular body composition in anorexic women. European journal of clinical nutrition, 57(9), 1068-1072. https://doi.org/10.1038/sj.ejcn.1601643
  3. Jones, M. D., Wewege, M. A., Hackett, D. A., Keogh, J., & Hagstrom, A. D. (2021). Sex Differences in Adaptations in Muscle Strength and Size Following Resistance Training in Older Adults: A Systematic Review and Meta-analysis. Sports medicine (Auckland, N.Z.), 51(3), 503-517. https://doi.org/10.1007/s40279-020-01388-4
  4. Kotani, K., Tokunaga, K., Fujioka, S., Kobatake, T., Keno, Y., Yoshida, S., Shimomura, I., Tarui, S., & Matsuzawa, Y. (1994). Sexual dimorphism of age-related changes in whole-body fat distribution in the obese. International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity, 18(4).
  5. Mally, K., & Dittmar, M. (2012). Comparison of three segmental multifrequency bioelectrical impedance techniques in healthy adults. Annals of human biology, 39(6), 468-478. https://doi.org/10.3109/03014460.2012.711858
  6. Gallagher, D., Visser, M., De Meersman, R. E., Sepulveda, D., Baumgartner, R. N., Pierson, R. N., Harris, T., & Heymsfield, S. B. (1997). Appendicular skeletal muscle mass: effects of age, gender, and ethnicity. Journal of applied physiology (Bethesda, Md. : 1985), 83(1), 229-239. https://doi.org/10.1152/jappl.1997.83.1.229
  7. Sawada, M., Kubota, N., Sekine, R., Yakabe, M., Kojima, T., Umeda-Kameyama, Y., Usami, S., Akishita, M., & Ogawa, S. (2021). Sex-related differences in the effects of nutritional status and body composition on functional disability in the elderly. PloS one, 16(2), e0246276. https://doi.org/10.1371/journal.pone.0246276
  8. Tinsley, G. M., Moore, M. L., Silva, A. M., & Sardinha, L. B. (2020). Cross-sectional and longitudinal agreement between two multifrequency bioimpedance devices for resistance, reactance, and phase angle values. European journal of clinical nutrition, 74(6), 900-911. https://doi.org/10.1038/s41430-019-0496-8
  9. Piccoli, A., Pastori, G., Guizzo, M., Rebeschini, M., Naso, A., & Cascone, C. (2005). Equivalence of information from single versus multiple frequency bioimpedance vector analysis in hemodialysis. Kidney international, 67(1), 301-313. https://doi.org/10.1111/j.1523-1755.2005.00083.x
  10. Silva, A. M., Matias, C. N., Nunes, C. L., Santos, D. A., Marini, E., Lukaski, H. C., & Sardinha, L. B. (2019). Lack of agreement of in vivo raw bioimpedance measurements obtained from two single and multi-frequency bioelectrical impedance devices. European journal of clinical nutrition, 73(7), 1077-1083. https://doi.org/10.1038/s41430-018-0355-z
  11. Piccoli, A., Pastori, G., Codognotto, M., & Paoli, A. (2007). Equivalence of information from single frequency v. bioimpedance spectroscopy in bodybuilders. The British journal of nutrition, 97(1), 182-192. https://doi.org/10.1017/S0007114507243077
  12. Genton, L., Norman, K., Spoerri, A., Pichard, C., Karseg ard, V. L., Herrmann, F. R., & Graf, C. E. (2017). Bioimpedance-Derived Phase Angle and Mortality Among Older People. Rejuvenation research, 20(2), 118-124. https://doi.org/10.1089/rej.2016.1879
  13. Tanabe, R. F., de Azevedo, Z. M., Fonseca, V. M., Peixoto, M. V., dos Anjos, L. A., Gaspar-Elsas, M. I., Moore, D. C., & Ramos, E. G. (2012). Distribution of bioelectrical impedance vector values in multi-ethnic infants and pre-school children. Clinical nutrition (Edinburgh, Scotland), 31(1), 144-148. https://doi.org/10.1016/j.clnu.2011.08.006
  14. Cornish, B. H., Jacobs, A., Thomas, B. J., & Ward, L. C. (1999). Optimizing electrode sites for segmental bioimpedance measurements. Physiological measurement, 20(3), 241-250. https://doi.org/10.1088/0967-3334/20/3/302
  15. Shiffman C. A. (2013). Adverse effects of near current-electrode placement in non-invasive bioimpedance measurements. Physiological measurement, 34(11), 1513-1529. https://doi.org/10.1088/0967-3334/34/11/1513
  16. Scheltinga, M. R., Jacobs, D. O., Kimbrough, T. D., & Wilmore, D. W. (1991). Alterations in body fluid content can be detected by bioelectrical impedance analysis. The Journal of surgical research, 50(5), 461-468. https://doi.org/10.1016/0022-4804(91)90025-H
  17. Tinsley, G. M., Harty, P. S., Moore, M. L., Grgic, J., Silva, A. M., & Sardinha, L. B. (2019). Changes in total and segmental bioelectrical resistance are correlated with whole-body and segmental changes in lean soft tissue following a resistance training intervention. Journal of the International Society of Sports Nutrition, 16(1), 58. https://doi.org/10.1186/s12970-019-0325-4
  18. Fuller, N. J., Fewtrell, M. S., Dewit, O., Elia, M., & Wells, J. C. (2002). Segmental bioelectrical impedance analysis in children aged 8-12 y: 2. The assessment of regional body composition and muscle mass. International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity, 26(5), 692-700.
  19. Stahn A, Terblanche E and Gunga H-C. (2012). Use of bioelectrical impedance: general principles and overview Handbook of Anthropometry: Physical Measures of Human form in Health and Disease ed V R Preedy (New York: Springer) pp 49-90 chapter 3
  20. Nescolarde, L., Lukaski, H., De Lorenzo, A., de-Mateo-Silleras, B., Redondo-Del-Rio, M. P., & Camina-Martin, M. A. (2016). Different displacement of bioimpedance vector due to Ag/AgCl electrode effect. European journal of clinical nutrition, 70(12), 1401-1407. https://doi.org/10.1038/ejcn.2016.121