DOI QR코드

DOI QR Code

Characterization of Phenotypic Traits and Application of Fruit Flesh Color Marker in Melon (Cucumis melo L.) Accessions

멜론 유전자원의 생육 평가와 과육색 유전형 분석

  • 배익현 (농업회사법인 동오시드 주식회사) ;
  • 강한솔 (농업회사법인 동오시드 주식회사) ;
  • 정우진 (농업회사법인 동오시드 주식회사) ;
  • 유재황 (농업회사법인 동오시드 주식회사) ;
  • 이오흠 (농업회사법인 동오시드 주식회사) ;
  • 정희 (농업회사법인 동오시드 주식회사)
  • Received : 2021.06.15
  • Accepted : 2021.09.29
  • Published : 2021.10.01

Abstract

We aimed to generate basic breeding data for melon (Cucumis melo L.). A total of 219 melon accessions conserved at the National Agrobiodiversity Center (NAC) in Rural Development Administration (RDA) were used in this study, of which 72 (33%) were collected from India. The majority of accessions showed orange (42%) and white (36%) flesh color. In addition to phenotypic evaluations, the accessions were genotyped using a molecular marker for the carotenoid biosynthesis gene CmOr. DNA fragments of the expected size were amplified in 205 out of 219 accessions. Digestion of the PCR products with HinfI restriction endonuclease showed 100% concordance between phenotype and genotype in green-fleshed accessions, but 98%, 97%, and 80% concordance in orange-, white-, and creamy-fleshed accessions, respectively. Sequence analysis revealed single nucleotide changes in the three positions of SNP1, SNP2 and SNP1int in the CmOr gene among accessions. These newly found alleles suggest that there are multiple mechanisms in determining fruit flesh color in melon. Also, the phenotype data of diverse accessions obtained in this study will be a valuable source for melon breeding.

멜론은 세계 각지에서 재배되는 경제적으로 중요한 작물중의 하나이다. 본 연구는 농업유전자원센터에서 수집 보관중인 멜론 유전자원을 대상으로 다양한 생육 특성을 특성을 조사하고, 멜론의 중요한 육종 형질중의 하나인 과육색의 유전형과 표현형을 조사하여 멜론 육종에 필요한 육종 재료 확보를 위한 기초 자료를 마련하고자 수행되었다. 총 219개의 멜론 유전자원을 대상으로 19개의 생육 특성과 PCA분석을 수행하고, 멜론의 중요한 육종 형질중의 하나인 과육색의 유전형을 조사하여 표현형과 비교하였다. 과육색은 오렌지색, 백색, 녹색, 유백색, 황색의 5가지로 분류하였으며, 이중 오렌지색이 87개로 가장 많았으며, 그 다음으로 백색이 75개였다. 그리고, 오렌지색과 녹색 과육 구별용 마커를 적용한 결과, 녹색 과육 21개의 경우는 표현형과 유전형 일치율이 100%였으며, 오렌지색의 경우는 98%, 백색은 97%, 유백색의 경우는 80%의 일치율을 보였다. 표현형과 유전형이 일치하는 않는 총 8개 유전자원의 염기서열을 분석한 결과, 3곳의 위치에서 단일염기다형성(SNP; single nucleotide polymorphism)이 있었다. 이러한 결과는 멜론의 과육색을 결정하는 아직 알려지지 않은 유전기작이 존재한다는 것을 제시하였으며, 본 연구에서 얻어진 다양한 유전자원의 생육조사 결과는 멜론 육종에 유용하게 쓰일 것으로 생각된다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 농업과학기반기술개발사업(과제 번호: PJ015067)의 지원에 의해 이루어졌음.

References

  1. Arumuganathan, K. and E.D. Earle. 1991. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9:208-218. https://doi.org/10.1007/BF02672069
  2. Bang, H.J., A.R. Davis, S. Kim, D.I. Leskovar and S.R. King. 2010. Flesh color inheritance and gene interactions among canary yellow, pale yellow, and red watermelon. J. Am. Soc. Hortic. Sci. 135(4):362-368. https://doi.org/10.21273/jashs.135.4.362
  3. Bang, H.J., S.G. Howlader, D. Leskovar and S. King. 2007. Development of a codominant CAPS marker for allelic selection between canary yellow and red watermelon based on SNP in lycopene b-cyclase (LCYB) gene. Mol. Breeding 20:63-72. https://doi.org/10.1007/s11032-006-9076-4
  4. Burger, Y., H. Paris, R. Cohen, N. Katzir, T. Tadmor, E. Lewinsohn and A.A. Schaffer. 2009. Genetic diversity of Cucumis melo. Horticul. Rev. 36:165-198.
  5. Chayut, N., H. Yuan, S. Ohali, A. Meir, Y. Yeselson, V. Portnoy, Y. Zheng, Z. Fei, E. Lewinsohn, N. Katzir, A. Schaffer, S. Gepstein, J. Burger, L. Li and Y. Tadmor. 2015. A bulk segregant transcriptome analysis reveals metabolic and cellular processes associated with Orange allelic variation and fruit β-carotene accumulation in melon fruit. BMC Plant Biol. 15:27. https://doi.org/10.1186/s12870-015-0426-4
  6. Clayberg, C. 1992. Interaction and linkage test of flesh color genes in Cucumis melo L. Rep. Cucurbit Genet. Coop. 15:53.
  7. Doyle, J.J. and J.L. Doyle. 1987. Isolation of plant DNA from fresh tissue. Focus 12:13-15.
  8. Garcia-Mas, J., A. Benjak, W. Sanseverino, M. Bourgeois, G. Mir, V.M. Gonzalez, E. Henaff, F. Camara, L. Cozzuto, E. Lowy, T. Alioto, S. Capella-Gutierrez, J. Blanca, J. Canizares, P. Ziarsolo, D. Gonzalez-Ibeas, L. Rodriguez-Moreno, M. Droege, L. Du, M. Alvarez-Tejado, B. Lorente-Galdos, M. Mele, Y. Yang, Y. Weng, A. Navarro, T. Marques-Bonet, M.A. Aranda, B. Nuez, Pico, B. Gabaldon, G. Roma, R. Guigo, J.M. Casacuberta, P. Arus and P. Puigdomenech. 2012. The genome of melon (Cucumis melo L.). Genome amplification in the absence of recent duplication in an old widely cultivated species. PNASU. 109(29):11872-118727. https://doi.org/10.1073/pnas.1205415109
  9. Goo, Y.M., E.H. Han, J.C. Jeong, S.S. Kwak, J. Yu, Y.H. Kim, M.J. Ahn and S.W. Lee. 2015. Overexpression of the sweetpotato IbOr gene results in the increased accumulation of carotenoid and confers tolerance to environmental stresses in transgenic potato. C. R. Biol. 338:12-20. https://doi.org/10.1016/j.crvi.2014.10.006
  10. Hashizume, T., I. Shimamoto and M. Hirai. 2003. Construction of a linkage map and QTL analysis of horticultural traits for watermelon [Citrullus lanatus (THUNB.) MATSUM & NAKAI] using RAPD, RFLP and ISSR markers. Theor. Appl. Genet. 106:779-785. https://doi.org/10.1007/s00122-002-1030-1
  11. Henderson, W.R., G.H. Scott and T.C. Wehner. 1998. Interaction of flesh color genes in watermelon. J. Heredity 89:50-53. https://doi.org/10.1093/jhered/89.1.50
  12. Howlader, J., Y. Hong, S. Natarajan, K.R. Sumi, J.I. Park and I.S. Nou. 2020. Development of powdery mildew race 5-specific SNP markers in Cucumis melo L. using whole-genome resequencing. Hortic. Environ. Biote. 61:347-357. https://doi.org/10.1007/s13580-019-00217-6
  13. Kang, L., S. Park, C.Y. Ji, H.S. Kim, H. Lee and S. Kwak. 2017. Metabolic engineering of carotenoids in transgenic sweetpotato. Breeding Sci. 67:27-34. https://doi.org/10.1270/jsbbs.16118
  14. Kim, H.S., C.Y. Ji, C.J. Lee, S.E. Kim, S.C. Park and S.S. Kwak. 2018. Orange: A target gene for regulating carotenoid homeostasis and increasing plant tolerance to environmental stress in marginal lands. J. Exp. Bot. 69(14):3393-3400. https://doi.org/10.1093/jxb/ery023
  15. Kim, H.T., J.I. Park and I.S. Nou. 2016. Identification of fungal races that cause powdery mildew in melon (Cucumis melo L.) and selection of resistant commercial melon cultivars against the identified races in Korea. J. Plant Biotechnol. 43:58-65 (in Korean). https://doi.org/10.5010/JPB.2016.43.1.58
  16. Kim, S.H., Y.H. Kim, Y.O. Ahn, M.J. Ahn, J.C. Jeong, H.S. Lee and S.S. Kwak. 2013. Downregulation of the lycopene ∈-cyclase gene increases carotenoid synthesis via the β-branch-specific pathway and enhances salt-stress tolerance in sweet potato transgenic calli. Physiol. Plant.147:432-442. https://doi.org/10.1111/j.1399-3054.2012.01688.x
  17. KOSIS. 2019. Korean Statistical Information Service 2019. http://kosis.kr/index/index.do. Accessed 20 December 2020
  18. Lee, S., I. Jang, D.Y. Hyun, J.R. Lee, S.H. Kim, E. Yoo, S. Lee, G.T. Cho and K.J. Lee. 2020. Evaluation of morphological traits and genetic composition in melon germplasm. Korean J. Crop Sci. 65(4):485-495 (in Korean). https://doi.org/10.7740/KJCS.2020.65.4.485
  19. Li, B., Y. Zhao, Q. Zhu, Z. Zhang, C. Fan, S. Amanullah, P. Gao and F. Luan. 2017. Mapping of powdery mildew resistance genes in melon (Cucumis melo L.) by bulked segregant analysis. Sci. Hortic-Amsterdam 220:160-167. https://doi.org/10.1016/j.scienta.2017.04.001
  20. Liu, C.H., H.Y. Zhang, Z.Y. Dai, X. Liu, Y. Lium, X.X. Deng, C. Feng and X. Juan. 2012. Volatile chemical and carotenoid profiles in watermelons [Citrullus vulgaris (Thunb.) Schrad (Cucurbitaceae)] with different flesh colors. Food Sci. Biotechnol. 21(2):531-541. https://doi.org/10.1007/s10068-012-0068-3
  21. Liu, S., P. Gao, X.Z. Wang, A.R. Davis, A.M. Baloch and F.S. Luan. 2015. Mapping of quantitative trait loci for lycopene content and fruit traits in Citrullus lanatus. Euphytica 202 (3):411-426. https://doi.org/10.1007/s10681-014-1308-9
  22. Lu, S., J. Van Eck, X. Zhou, A.B. Lopez, D.M. O'Halloran, K.M. Cosman, B.J. Conlin, D.J. Paolillo, D.F. Garvin, J. Vrebalov, L.V. Kochian, H. Kupper, E.D. Earle, J. Cao and L. Li. 2006. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation. Plant Cell 18:3594-3605. https://doi.org/10.1105/tpc.106.046417
  23. Niyogi, K.K. 1999. Photoprotection revisited: Genetic and molecular approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:333-359. https://doi.org/10.1146/annurev.arplant.50.1.333
  24. Noh, J.J., O.S Hur, N.Y. Ro, J.E. Lee, A.J. Hwang, B.S. Kim, J.H. Rhee, J.Y. Yi, J.H. Kim, H.W. Lee, J.S. Sung, M.K. Kim and A.D. Assefa. 2020. Lycopene content and fruit morphology of red, pink orange, and yellow fleshed watermelon (Citrullus lanauts) germplasm collections. Korean J. Plant Res. 33(6):624-637. https://doi.org/10.7732/KJPR.2020.33.6.624
  25. Park, S., H.S. Kim, S. Park, H.S. Kim, Y.J. Jung, S.H. Kim, C.Y. Ji, Z. Wang, J.C. Jeong, H.S. Lee, S.Y. Lee and S.S. Kwak. 2016. Orange protein has a role in phytoene synthase stabilization in sweetpotato. Sci. Rep. 6(1):33563. https://doi.org/10.1038/srep33563
  26. Park, S.C., S.H. Kim, S.Y. Park, H.U. Lee, J.S. Lee, W.S. Park, M.J. Ahn, Y.H. Kim, J.C. Jeong, H.S. Lee and S.S. Kwak. 2015. Enhanced accumulation of carotenoids in sweetpotato plants overexpressing IbOr-Ins gene in purple-fleshed sweetpotato cultivar. Plant physiol. Bioch. 86:82-90. https://doi.org/10.1016/j.plaphy.2014.11.017
  27. Rodriguez-Concepcion, M. 2010. Supply of precursors for carotenoid biosynthesis in plants. Arch. Biochem. Biophys. 504: 118-122. https://doi.org/10.1016/j.abb.2010.06.016
  28. Tadmor, Y., S. King, A. Levi, A.R. Davis, A. Meir, B. Wasserman, J. Hirschberg and E. Lewinsohn. 2005. Comparative fruit coloration in watermelon and tomato. Food Res. Int. 38:837-841. https://doi.org/10.1016/j.foodres.2004.07.011
  29. Torres, A., P. Langenhoven and B.K. Behe. 2020. Characterizing the US melon market. HortScience 556:795-803.
  30. Tzuri, G., X. Zhou, N. Chayut, H. Yuan, V. Portnoy, A. Meir, U. Sa'ar, F. Baumkoler, M. Mazourek, E. Lewinsohn, Z. Fei, A.A. Schaffer, L. Li, J. Burger, N. Katzir and Y. Tadmor. 2015. A 'golden' SNP in CmOr governs the fruit flesh color of melon (Cucumis melo). Plant J. 82:267-279. https://doi.org/10.1111/tpj.12814
  31. Walter, M.H. and D. Strack. 2011. Carotenoids and their cleavage products: Biosynthesis and functions. Nat. Prod. Rep. 28:663-692. https://doi.org/10.1039/c0np00036a
  32. Welsch, R., X. Zhou, J. Koschmieder, T. Schlossarek, H. Yuan, T. Sun and L. Li. 2020. Characterization of cauliflower OR mutant variants. Front Plant Sci. 10:1716. https://doi.org/10.3389/fpls.2019.01716
  33. Yan, H.S., F.Y. Yang, B.G. Lu, W.W. Zhao, T. Jiang, L. Feng, X.J. Chen and R. Ming. 2019. Exploring the differential mechanisms of carotenoid biosynthesis in the yellow peel and red flesh of papaya. BMC Genomics 20:49. https://doi.org/10.1186/s12864-018-5388-0
  34. Yuan, H., K. Owsiany, T.E. Sheeja, X. Zhou, C. Rodriguez, Y. Li, R. Welsch, N. Chayut, Y. Yang, T.W. Thannhauser, M.V. Parthasarathy, Q. Xu, X. Deng, Z. Fei, A. Schaffer, N. Katzir, J. Burger, Y. Tadmor and L. Li. 2015. A single amino acid substitution in an ORANGE protein promotes carotenoid over accumulation in Arabidopsis. Plant Physiol. 169:421-431. https://doi.org/10.1104/pp.15.00971
  35. Yuan, P., M.J. Umer , N. He , S. Zhao, X. Lu , H. Zhu , C. Gong, W. Diao, Haileslassie Gebremeskel, Hanhui Kuang and Wenge Liu. 2021. Transcriptome regulation of carotenoids in five flesh-colored watermelons (Citrullus lanatus). BMC Plant Biol. 21:203. https://doi.org/10.1186/s12870-021-02965-z
  36. Zhang, C., Y. Ren, S. Guo, H. Zhang, G. Gong and Y. Xu. 2013. Application of comparative genomics in developing markers tightly linked to the Pm-2F gene for powdery mildew resistance in melon (Cucumis melo L.). Euphytica 190:157-168. https://doi.org/10.1007/s10681-012-0828-4
  37. Zhang, J., S. Guo, Y. Ren, H. Zhang, G. Gong, M. Zhou, G. Wang, M. Zong, H. He, J. Zhang, S. Guo, Y. Ren, H. Zhang, G. Gong, M. Zhou, G. Wang, M. Zong, H. He, F. Liu and Y. Xu. 2016. High-level expression of a novel chromoplast phosphate transporter ClPHT4;2 is required for flesh color development in watermelon. New Phytol. 213(3):1208-1221. https://doi.org/10.1111/nph.14257
  38. Zhou, X., R. Welsch, Y. Yang, D. Alvarez, M. Riediger, H. Yuan, T. Fish, J. Liu, T.W. Thannhauser and L. Li. 2015. Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis. PNASU. 112:3558-3563. https://doi.org/10.1073/pnas.1420831112