Acknowledgement
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1I1A01074894, NRF-2021R1A6A1A10045235).
References
- Areco MM and M dos Santos Afonso. 2010. Copper, zinc, cadmium and lead biosorption by Gymnogongrus torulosus. Thermodynamics and kinetics studies. Colloid Surf. B-Biointerfaces 81:620-628. https://doi.org/10.1016/j.colsurfb.2010.08.014
- Ayed HBA, B Taidi, H Ayadi, D Pareau and M Stambouli. 2015. Effect of magnesium ion concentration in autotrophic cultures of Chlorella vulgaris. Algal Res. 9:291-296. https://doi.org/10.1016/j.algal.2015.03.021
- Campbell PGC, O Errecalde, C Fortin, VP Hiriart-Baer and B Vigneault. 2002. Metal bioavailability to phytoplankton-applicability of the biotic ligand model. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 133:189-206. https://doi.org/10.1016/S1532-0456(02)00104-7
- Chen Z, W Ma and M Han. 2008. Biosorption of nickel and copper onto treated alga (Undaria pinnatifida): Application of isotherm and kinetic models. J. Hazard. Mater. 155:327-333. https://doi.org/10.1016/j.jhazmat.2007.11.064
- Chen Z, L Zhu and KJ Wilkinson. 2010. Validation of the biotic ligand model in metal mixture: bioaccumulation of lead and copper. Environ. Sci. Technol. 44:3580-3586. https://doi.org/10.1021/es1003457
- Cooper S, L Hare and PGC Campbell. 2010. Modeling cadmium uptake from water and food by the freshwater bivalve Pyganodon grandis. Can. J. Fish. Aquat. Sci. 67:1874-1888. https://doi.org/10.1139/F10-103
- Dang F, H Zhong and WX Wang. 2009. Copper uptake kinetics and regulation in a marine fish after waterborne copper acclimation. Aquat. Toxicol. 94:238-244. https://doi.org/10.1016/j.aquatox.2009.07.011
- De Schamphelaere KAC, JL Stauber, KL Wilde, SJ Markich, PL Brown, NM Franklin, NM Creighton and CR Janssen. 2005. Toward a biotic ligand model for freshwater green algae: surface-bound and internal copper are better predictors of toxicity than free Cu2+ -ion activity when pH is varied. Environ. Sci. Technol. 39:2067-2072. https://doi.org/10.1021/es049256l
- EPA. 2002. Method 1003.0: Green Alga Selenastrum capricornutum, Growth Test: Chronic Toxicity. Environmental Protection Agency. Washington, D.C.
- Fortin C, FH Denison and J Garnier-Laplace. 2007. Metal-phytoplankton interactions: Modeling the effect of competing ions (H+, Ca2+, and Mg2+) on uranium uptake. Environ. Toxicol. Chem. 26:242-248. https://doi.org/10.1897/06-298R.1
- Franklin NM, JL Stauber, SC Apte and RP Lim. 2002. Effect of initial cell density on the bioavailability and toxicity of copper in microalgal bioassays. Environ. Toxicol. Chem. 21:742-751. https://doi.org/10.1897/1551-5028(2002)021<0742:EOICDO>2.0.CO;2
- Gatidou G and NS Thomaidis. 2007. Evaluation of single and joint toxic effects of two antifouling biocides, their main metabolites and copper using phytoplankton bioassays. Aquat. Toxicol. 85:184-191. https://doi.org/10.1016/j.aquatox.2007.09.002
- Hassler CS, VI Slaveykova and KJ Wilkinson. 2004. Some fundamental (and often overlooked) considerations underlying the free ion activity and biotic ligand models. Environ. Toxicol. Chem. 23:283-291. https://doi.org/10.1897/03-149
- Ho YS and G Mckay. 1999. Pseudo-second order model for sorption processes. Process Biochem. 34:451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
- Janssen CR and DG Heijerick. 2003. Algal toxicity testing for environmental risk assessments of metals: Physiological and ecological considerations. Rev. Environ. Contam. Toxicol. 178:23-52.
- Jayakumar R, M Rajasimman and C Karthikeyan. 2014. Sorption of hexavalent chromium from aqueous solution using marine green algae Halimeda gracilis: Optimization, equilibrium, kinetic, thermodynamic and desorption studies. J. Environ. Chem. Eng. 2:1261-1274. https://doi.org/10.1016/j.jece.2014.05.007
- Jeyakumar RPS and V Chandrasekaran. 2014. Adsorption of lead (II) ions by activated carbons prepared from marine green algae: Equilibrium and kinetics studies. Int. J. Ind. Chem. 5:10. https://doi.org/10.1007/s40090-014-0010-z
- Kadukova J and E Vircikova. 2005. Comparison of differences between copper bioaccumulation and biosorption. Environ. Int. 31:227-232. https://doi.org/10.1016/j.envint.2004.09.020
- Kim Y, J Son, HH Mo, YS Lee and K Cho. 2018. Modeling the influence of initial density and copper exposure on the interspecific competition of two algal species. Ecol. Model. 383:160-170. https://doi.org/10.1016/j.ecolmodel.2018.04.018
- Kim Y, J Son, YS Lee, J Wee, M Lee and K Cho. 2020. Temperature-dependent competitive advantages of an allelopathic alga over non-allelopathic alga are altered by pollutants and initial algal abundance levels. Sci. Rep. 10:4419. https://doi.org/10.1038/s41598-020-61438-9
- Levy JL, BM Angel, JL Stauber, WL Poon, SL Simpson, SH Cheng and DF Jolley. 2008. Uptake and internalisation of copper by three marine microalgae: Comparison of copper-sensitive and copper-tolerant species. Aquat. Toxicol. 89:82-93. https://doi.org/10.1016/j.aquatox.2008.06.003
- Ma W, FQ Ya, M Han and R Wang. 2007. Characteristics of equilibrium, kinetics studies for adsorption of fluoride on magnetic-chitosan particle. J. Hazard. Mater. 143:296-302. https://doi.org/10.1016/j.jhazmat.2006.09.032
- Machado MD, AR Lopes and EV Soares. 2015. Responses of the alga Pseudokirchneriella subcapitata to long-term exposure to metal stress. J. Hazard. Mater. 296:82-92. https://doi.org/10.1016/j.jhazmat.2015.04.022
- Mehta SK, A Singh and JP Gaur. 2002. Kinetics of adsorption and uptake of Cu2+ by Chlorella vulgaris: influence of pH, temperature, culture age, and cations. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 37:399-414.
- Miao AJ and WX Wang. 2007. Predicting copper toxicity with its intracellular or subcellular concentration and the thiol synthesis in a marine diatom. Environ. Sci. Technol. 41:1777-1782. https://doi.org/10.1021/es0613963
- Paquet N, M Lavoie, F Maloney, JFL Duval, PGC Campbell and C Fortin. 2015. Cadmium accumulation and toxicity in the unicellular alga Pseudokirchneriella subcapitata: Influence of metal-binding exudates and exposure time. Environ. Toxicol. Chem. 34:1524-1532. https://doi.org/10.1002/etc.2927
- Slaveykova VI and KJ Wilkinson. 2005. Predicting the bioavailability of metals and metal complexes: Critical review of the biotic ligand model. Environ. Chem. 2:9-24. https://doi.org/10.1071/en04076
- Stoiber TL, MM Shafer and DE Armstrong. 2012. Relationships between surface-bound and internalized copper and cadmium and toxicity in Chlamydomonas reinhardtii. Environ. Toxicol. Chem. 31:324-335. https://doi.org/10.1002/etc.725
- Tien CJ, DC Sigee and KN White. 2005. Copper adsorption kinetics of cultured algal cells and freshwater phytoplankton with emphasis on cell surface characteristics. J. Appl. Phycol. 17:379-389. https://doi.org/10.1007/s10811-005-5555-y
- Wilde KL, JL Stauber, SJ Markich, NM Franklin and PL Brown. 2006. The effect of pH on the uptake and toxicity of copper and zinc in a tropical freshwater alga (Chlorella sp.). Arch. Environ. Contam. Toxicol. 51:174-185. https://doi.org/10.1007/s00244-004-0256-0
- Xiong Y, J Xu, W Shan, Z Lou, D Fang, S Zang and G Han. 2013. A new approach for rhenium(VII) recovery by using modified brown algae Laminaria japonica adsorbent. Bioresour. Technol. 127:464-472. https://doi.org/10.1016/j.biortech.2012.09.099
- Zeng J, L Yang and WX Wang. 2009. Cadmium and zinc uptake and toxicity in two strains of Microcystis aeruginosa predicted by metal free ion activity and intracellular concentration. Aquat. Toxicol. 91:212-220. https://doi.org/10.1016/j.aquatox.2008.11.004