DOI QR코드

DOI QR Code

Characteristics of the spatio-temporal distributions of water quality and phytoplankton communities in the Isa Stream systems (ISS)

이사천 수계의 수질환경과 식물플랑크톤 군집의 시·공간적 분포 특성

  • Park, Jong Sick (Ocean Fisheries Research and Development Co.) ;
  • Cheong, Cheong-Jo (Department of Environmental Engineering, Suncheon National University) ;
  • Yoon, Yang Ho (Department of Ocean Integrated Science, Chonnam National University)
  • 박종식 ((주)해양수산연구개발) ;
  • 정정조 (순천대학교 환경공학과) ;
  • 윤양호 (전남대학교 해양융합과학과)
  • Received : 2021.08.18
  • Accepted : 2021.08.30
  • Published : 2021.09.30

Abstract

We analyzed the spatio-temporal distribution characteristics of water quality and phytoplankton communities in the Isa Stream systems (ISS) from Sangsa Lake to Suncheon Bay. Sangsa Lake showed relatively oligotrophic and mesotrophic conditions, but the freshwater and mixed brackish water zones showed more severe eutrophication than Sangsa Lake and Suncheon Bay due to the influence of industrial waste such as livestock waste. In terms of the phytoplankton community, the number of phytoplankton species was higher in freshwater and mixed brackish water zones than in Sangsa Lake and Suncheon Bay, but the cell density and Chlorophyll-a concentrations (Chl-a) were relatively high in Sanga Lake and Suncheon Bay. In particular, the mesotrophic species Fragilaria crotonensis and Asterionella formosa showed different dominance in the surface and bottom layers, and the influence of A. formosa was significant in the freshwater and mixed brackish water zones in spring and summer. However, Skeletonema costatum-ls, a eutrophic indicator species, dominated in mixed brackish water zones to seawater in autumn and winter. Thus, the severe eutrophication and rapid environmental changes in the ISS could seriously damage the coastal ecosystem in Suncheon Bay. These ecosystem changes are threatening in terms of conservation and management of the UNESCO Suncheon Biosphere Reserve and Yeoja Bay including Suncheon Bay, which recorded the first Ramsar wetland in Korea. Therefore, further research is needed to establish an in-depth management plan.

상사호에서 순천만까지 짧은 수역 특성을 나타내는 이사천 수계(Isa Stream systems)의 수질 환경 및 식물플랑크톤 군집의 시·공간 분포 특성을 분석하였다. 결과, 상사호는 상대적으로 빈영양 및 중영양 조건을 나타내지만, 순천만에 이루는 담수역과 기수역은 축산폐수 등 산업폐수의 영향으로 상사호 및 해수역보다 극심한 부영양상태를 나타내었다. 식물플랑크톤 군집은 상사호와 순천만보다 담수역 및 기수역에서 출현 종수가 높았지만, 현존량 및 엽록소 a 농도는 상사호와 해수역에서 상대적으로 높게 나타났다. 특히 봄과 여름 상사호는 중영양종인 Fragilaria crotonensis와 Asterionella formosa가 표층과 저층에서 서로 다른 우점 현상을 보이는 것으로 댐 하류의 담수역과 기수역에서는 A. formosa에 의한 영향이 크게 나타났다. 그러나 가을과 겨울은 기수역에서 해수역까지 부영양화 지표종인 Skeletonema costatum-ls가 극우점하였다. 즉 이사천 수계의 급격한 환경변화는 순천만 연안생태계 구조를 심각하게 훼손시킬 수 있을 것으로 판단되었다. 급격한 연안생태계 변화는 한국 제1호 람사르습지인 순천만 및 순천 생물권보전지역 및 최대 꼬막 산지인 여자만의 효율적 이용과 관리, 그리고 보전이라는 측면에서 매우 위협적인 내용이기에, 더욱 심층적인 관리방안 도출이 요구된다고 할 수 있다.

Keywords

References

  1. Amos CL, TA Rashidi, K Rakha, H El-gamily and R Nicholls. 2013. Sea surface temperature trends in the coastal ocean. Curr. Dev. Oceanogr. 6:1-13.
  2. Anderson LA and JL Sarmiento. 1994. Redfield ratios of remineralization determined by nutrient data analysis. Glob. Biogeochem. Cycle. 8:65-80. https://doi.org/10.1029/93GB03318
  3. Barroso HS, H Becker and VMM Melo. 2016. Influence of river discharge on phytoplankton structure and nutrient concentrations in four tropical semiarid estuaries. Braz. J. Oceanogr. 64:37-48. https://doi.org/10.1590/S1679-87592016101406401
  4. Bazin P, F Jouenne, T Friedl, AF Deton-Cabanillas, B Le Roy and B Veron. 2014. Phytoplankton diversity and community composition along the estuarine gradient of a temperate macrotidal ecosystem: Combined morphological and molecular approaches. PLoS One 9:e94110. https://doi.org/10.1371/journal.pone.0094110
  5. Behrenfeld MJ, DA Siegel, RT O'Malley and S Maritorena. 2009. Global ocean phytoplankton. pp. S68-S73. In: State of the Climate in 2008(Peterson TR and MO Baringer eds.). Bulletin of the American Meteorological Society.
  6. Cantin A, BE Beisner, JM Gunn, YT Prairie and JG Winter. 2011. Effects of thermocline deepening on lake plankton communities. Can. J. Fish. Aquat. Sci. 68:260-276. https://doi.org/10.1139/F10-138
  7. Chang YK and SL Jeon. 1996. A study on the phytoplankton in the Paldang dam reservior. II. The changes of phytoplankton species composition. Algae 11:217-229.
  8. Chihra M and M Murano. 1997. An Ilustrated Guide to Marine Plankton in Japan. Tokai Univ. Press. Tokyo. p. 1574.
  9. Chung J. 1993. Illustration of the Freshwater Algae of Korea. Academy Publ. Co. Seoul. p. 496.
  10. Cloern JE, AD Jassby, TS Schraga, E Nejad, C Martin. 2017. Ecosystem variability along the estuarine salinity gradient: Examples from long-term study of San Francisco Bay. Limnol. Oceanogr. 62:S272-S291. https://doi.org/10.1002/lno.10537
  11. Cupp PE. 1943. Marine Plankton Diatoms of the West Coast of North America. Bull. Scripps Inst. Oceanogr. Univ. California. La Jolla, CA. pp. 1-237.
  12. Dafner EV, R Boscolo and HL Bryden. 2003. The N:Si:P molar ratio in the Strait of Gibraltar. Geophys. Res. Lett. 30:1-4.
  13. Darki BZ. 2015. Spatial distribution of Asterionella formosa Hassall, Cyclotella ocellata Pantocsek and Fragilaria crotonensis Kitton in the Zayandehrud Reservoir Dam, Iran. Ecopersia 3:1119-1132.
  14. DLCEK. The Digital Local Culture Encyclopedia of Korea. The Academy of Korean Studies. Seongnam, Korea. http://www.grandculture.net
  15. Gameiro C, P Cartaxana, MT Cabrita and V Brotas. 2004. Variability in chlorophyll and phytoplankton composition in an estuarine system. Hydrobiologia 525:113-124. https://doi.org/10.1023/B:HYDR.0000038858.29164.31
  16. Hartig JH and DG Wallen. 1986. The influence of light and temperature on growth and photosynthesis of Fragilaria crotonensis Kitton. J. Freshw. Ecol. 3:371-382. https://doi.org/10.1080/02705060.1986.9665128
  17. Hoshiai T. 1964. Synecological study on the intertidal zonation of the Asamushi coastal area with special reference to its reformation. Bull. Mar. Biol. Stn. Asamushi 12:93-126.
  18. Hwang SO, CJ Ko, GS Lee, JM Lee and BH Kim. 2005. The Plankton of Lake in Korea - Lake Juam. Junghaengsha. Seoul. p. 109.
  19. Jaanus A, K Toming, S Hallfors, K Kaljurand and I Lips. 2009. Potential phytoplankton indicator species for monitoring Baltic coastal waters in the summer period. Hydrobiologia 629:157-168. https://doi.org/10.1007/s10750-009-9768-y
  20. Jang PG, WJ Lee, MC Jang, JD Lee, WJ Lee, M Chang, KC Hwang and K Shin. 2005. Spatial and temporal distribution of inorganic nutrients and factors controlling their distributions in Gwangyang Bay. Ocean Polar Res. 27:359-379. https://doi.org/10.4217/OPR.2005.27.4.359
  21. Jeong EJ, JE Na, GM Kim, SS Shim and HY Lee. 2010. Water temperature and community of phytoplankton in Youngsan River, Korea. Korean J. Environ. Biol. 28:56-63.
  22. Jung SW, OY Kwon, SM Yun, HM Joo, JH Kang and JH Lee. 2014. Impacts of dam discharge on river environments and phytoplankton communities in a regulated river system, the lower Han River of South Korea. J. Ecol. Environ. 37:1-11. https://doi.org/10.5141/ecoenv.2014.001
  23. KDI. 1998. The Effects of Livestock Waste on River Pollution and the Suggestions of Profer Treatments for Livestock Waste. ISBN 89-8178-074-9 93530. Korea Development Institute. Seoul. p. 142.
  24. Kim HS, H Kim, D Yang and YH Yoon. 2020. Spatio-temporal distribution patterns of phytoplankton community and the characteristics of biological oceanographic environments in the Geumgang Estuary, West Sea of Korea in 2018. Korean J. Environ. Biol. 38:254-270. https://doi.org/10.11626/KJEB.2020.38.2.254
  25. Kim YJ, MW Kim and SJ Kim. 1998. Ecological characteristics of phytoplankton community in the mild- and downstream of the Han River. Algae 13:331-338.
  26. K-water. 2014. A Study on the Aqua-Environment Mornitoing and Influence Analysis for Juam Controlled Dam Downstream. KIWE-WRRC-13-06. Korea Water Resources Corporation. Daejeon, Korea. p. 49.
  27. Lee EJ and KS Cho. 1994. Yearly variation of phytoplankton in Lake Soyang. Korean J. Limnol. 27:9-22.
  28. Lee EJ, BC Kim and KS Cho. 1998. Patterns of phytoplankton community structure at inlet site (Sanggul-Ri) in lake Soyang from 1984 to 1997. Korean J. Limnol. 31:119-128.
  29. Lee HN, KS Jung, GH Cheon and YT Hur. 2015. A investigation and analysis of water temperature by Juam regulation dam outflow in downstream and Suncheon Bay. J. Korea Water Resour. Ass. 48:501-509. https://doi.org/10.3741/JKWRA.2015.48.6.501
  30. Lee JH, IH Baek and CH Kim. 2000. Determination of optimum water intaking depth based on phytoplankton distribution in Unmun Reservoir. Korean J. Limnol. 33:311-318.
  31. Lee K and SK Yoon. 2002. Seasonal changes of the phytoplankton community in the Imjin River. Korean J. Limnol. 35:111-122.
  32. Lopez-Urrutia A and XAG Moran. 2015. Temperature affects the size-structure of phytoplankton communities in the ocean: Temperature and phytoplankton size. Limnol. Oceanogr. 60:733-738. https://doi.org/10.1002/lno.10049
  33. McLusky DS. 1993. Marine and estuarine gradients - An overview. Neth. J. Aquat. Ecol. 27:489-493. https://doi.org/10.1007/BF02334809
  34. McNaughton SJ. 1968. Structure and function in California grasslands. Ecology 49:962-972. https://doi.org/10.2307/1936547
  35. ME. 2008. Official Testing Method with Respect to Water Pollution Process. Official Announcement. Ministry of Environment. Sejong, Korea.
  36. ME and NIBR. 2010a. Agal Flora of Korea (Vol. 3, No. 1) - Freshwater Diatoms I. Ministry of Environment. Sejong, Korea. National Institute of Biological Resources. Incheon, Korea. p. 154.
  37. ME and NIBR. 2010b. Agal Flora of Korea (Vol. 3, No. 2) - Freshwater Diatoms II. Ministry of Environment. Sejong, Korea. National Institute of Biological Resources. Incheon, Korea. p. 153.
  38. ME and NIBR. 2011a. Agal Flora of Korea (Vol. 3, No. 3) - Freshwater Diatoms III. Ministry of Environment. Sejong, Korea. National Institute of Biological Resources. Incheon, Korea. p. 95.
  39. ME and NIBR. 2011b. Agal Flora of Korea (Vol. 3, No. 4) - Freshwater Diatoms IV. Ministry of Environment. Sejong, Korea. National Institute of Biological Resources. Incheon, Korea. p. 71.
  40. Noh KH, JH Kim and YC Chung. 1991. Species composition and dynamics of phytoplankton community in Dong Cheon and Isa Cheon flowed into Suncheon Bay. Korean J. Limnol. 24:153-163.
  41. Park MO, SS Kim, SG Kim, J Kwon, SM Lee and YW Lee. 2012. Factors controlling temporal-spatial variations of marine environment in the Seomjin river estuary through 25-hour continuous monitoring. J. Korean Soc. Mar. Environ. Eng. 15:314-322. https://doi.org/10.7846/JKOSMEE.2012.15.4.314
  42. Parsons TR, M Takahashi and B Hargrave. 1984. Biological Oceanographic Processes (3rd eds). Pergamon Press. Oxford, UK. p. 330.
  43. Pritchard DW. 1989. Estuarine classification - a help or a hindrance. pp. 1-38. In: Estuarine Circulation (Neilson BJ, A Kuo and J Brubaker eds.). Humana Press. Clifton, NJ.
  44. Rabalais NN, RE Turner, RJ Diaz and D Justio. 2009. Global change and eutrophication of coastal waters. ICES J. Mar. Sci. 66:1528-1537. https://doi.org/10.1093/icesjms/fsp047
  45. Rasconi S, K Winter and MJ Kainz. 2017. Temperature increase and fluctuation induce phytoplankton biodiversity loss - Evidence from a multi-seasonal mesocosm experiment. Ecol. Evol. 7:2936-2946. https://doi.org/10.1002/ece3.2889
  46. Redfield AC, BH Ketchum and FA Richards. 1963. The influence of organisms on the composition of seawater. pp. 26-77. In: The Sea Vol. 2(Hill MN ed.). Interscience. New York.
  47. Shannon CE and W Weaver. 1963. The Mathematical Theory of Communication. Univ. Illinois Press. Urbana, IL. p. 125.
  48. Shin YK. 2013. An ecological study of phytoplankton community in the Geum river estuary. Korean J. Ecol. Environ. 46:524-540. https://doi.org/10.11614/KSL.2013.46.4.524
  49. Smith VH, GD Tilman and JC Nekola. 1999. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 100:179-196. https://doi.org/10.1016/S0269-7491(99)00091-3
  50. Sun YJ, C Cho, BC Kim, IA Huh, JH Yoon, NI Chang, SS Cha and YK Cho. 2003. Seasonal variability of thermal structure and heat flux in the Juam reservoir. Korean J. Limnol. 36:277-285.
  51. Throndsen J. 1978. Preservation and storage. pp. 69-74. In: Phytoplankton Manual(Sournia A ed.). UNESCO. Paris.
  52. Trigueros JM and E Orive. 2000. Tidally driven distribution of phytoplankton blooms in a shallow, macrotidal estuary. J. Plankton Res. 22:969-986. https://doi.org/10.1093/plankt/22.5.969
  53. Unoki S. 2005. How Does River Development Change in the Coastal Waters. Seibutsukenkyusha. Tokyo. p. 116.
  54. Vasudevan S, MP Arulmoorthy, K Balachandar, S Harikumar and V Ashokprabu. 2014. Extensive bloom of phytoplankton Skeletonema costatum in Vellar Estuary, Parangipettai, Tamilnadu, Southeast Coast of India. Int. J. Curr. Trop. Res. 3:154-157.
  55. Verity PG. 1981. Effects of temperature, irradiance, and daylength on the marine diatom Leptocylindrus danicus Cleve. II. Excretion. J. Exp. Mar. Biol. Ecol. 55:159-169. https://doi.org/10.1016/0022-0981(81)90109-X
  56. Vigil P, P Countway, J Rose, DJ Lonsdale, CJ Gobler and DA Caron. 2009. Rapid shifts in dominant taxa among microbial eukaryotes in estuarine ecosystems. Aquat. Microb. Ecol. 54:83-100. https://doi.org/10.3354/ame01252
  57. Wioniewska M and EA Dembowska. 2017. Phytoplankton dynamics in relation to physicochemical conditions in large, stratified Lake Charzykowskie (Northern Poland). Oceanol. Hydrobiol. Stud. 46:260-270. https://doi.org/10.1515/ohs-2017-0028
  58. Wolfe AP, AC van Gorp and JS Baron. 2003. Recent ecological and biogeochemical changes in alpine lakes of Rocky Mountain National Park (Colorado, USA): a response to anthropogenic nitrogen deposition. Geobiology 1:153-168. https://doi.org/10.1046/j.1472-4669.2003.00012.x
  59. Yoder JA and MA Kennelly. 2003. Seasonal and ENSO variability in global ocean phytoplankton chlorophyll derived from 4 years of SeaWiFS measurements. Glob. Biogeochem. Cycle. 17:1112.
  60. Yoon YH. 2011. Marine environments and phytoplankton in the South-western Sea of Korea. pp. 68-93. In: The Plankton Ecology in Korean Coastal Waters (Choi CK ed.). Donghwa Publ. Seoul.
  61. Yoon YH. 2019. Spatio-temporal distributions of phytoplankton community in the estuarine of Seomjin River and Sueo Stream(ESRaSS). Sci. Fish. Oceanogr. 28:58-69. https://doi.org/10.22714/SFO.2019.28.1.8
  62. Youn SJ, HN Kim, JK Im, YJ Kim, JS Baek, SW Lee, EJ Lee and SJ Yu. 2017. Effect of environmental factors on phytoplankton communities and dominant species succession in Lake Cheongpyeong. J. Environ. Sci. Int. 26:913-925. https://doi.org/10.5322/JESI.2017.26.8.913
  63. Yun JI, KH Hwang, HH Chung, MY Shin, JT Lim and JC Shin. 1997. Effects of an artificial lake on the local climate and the crop production in Suncheon area. Asia-Pac. J. Atmospheric Sci. 33:409-427.
  64. Zhang Y, H Lin, C Chen, L Chen, B Zhang and AA Gitelson. 2011. Estimation of chlorophyll-a concentration in estuarine waters: Case study of the Pearl River estuary, South China Sea. Environ. Res. Lett. 6:024016. https://doi.org/10.1088/1748-9326/6/2/024016