References
- Baron AD. 1998. Postprandial hyperglycaemia and α-glucosidase inhibitors. Diabetes Res. Clin. Pract., 40:S51-S55 https://doi.org/10.1016/S0168-8227(98)00043-6
- Beauchamp C, Fridovich I. 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem., 44(1):276-287 https://doi.org/10.1016/0003-2697(71)90370-8
- Bhandari MR, Jong-Anurakkun N, Hong G, Kawabata J. 2008. α-glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb pakhanbhed (Bergenia Ciliata, Haw.). Food Chem., 106(1):247-252 https://doi.org/10.1016/j.foodchem.2007.05.077
- Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature, 181(4617):1199-1200 https://doi.org/10.1038/1811199a0
- Custodio L, Patarra J, Albericio F, da Rosa Neng N, Nogueira JMF, Romano A. 2015. Phenolic composition, antioxidant potential and in Vitro inhibitory activity of leaves and acorns of Quercus Suber on key enzymes relevant for hyperglycemia and Alzheimer's disease. Ind. Crops Prod., 64:45-51 https://doi.org/10.1016/j.indcrop.2014.11.001
- Dehghan H, Salehi P, Amiri MS. 2018. Bioassay-guided purification of α-amylase, α-glucosidase inhibitors and DPPH radical scavengers from roots of Rheum turkestanicum. Ind. Crops Prod., 117:303-309 https://doi.org/10.1016/j.indcrop.2018.02.086
- Delgado T, Malheiro R, Pereira JA, Ramalhosa E. 2010. Hazelnut (Corylus Avellana L.) Kernels as a source of antioxidants and their potential in relation to other nuts. Ind. Crops Prod., 32(3):621-626 https://doi.org/10.1016/j.indcrop.2010.07.019
- Hong JH. 2021. Diabetes and vitamin D. J. Korean Diabetes, 22(1):6-11 https://doi.org/10.4093/jkd.2021.22.1.6
- Ishartati E, Roeswitawati D, Rohman S. 2021. α-Glucosidase and α-amylase inhibitory activities of jambolan (Syzygium Cumini (L.) SKEELS) fruit and seed. Atlantis Press, 14:256-260
- Je HJ, Shin KO. 2016. A review of the general characteristics and functions of acorns. Korean J. Food Nutr., 29(1):58-64 https://doi.org/10.9799/KSFAN.2016.29.1.058
- Ji YJ, Lee EY, Lee JY, Lee YJ, Lee SE, Seo KH, Kim HD. 2020. Antioxidant and anti-diabetic effects of Agastache rugosa extract. J. East. Asian Soc. Diet. Life, 30:297-305 https://doi.org/10.17495/easdl.2020.8.30.4.297
- Joo SY. 2013. Antioxidant activity and quality characteristics of chestnut cookies. J. Korean Soc. Food Cult., 28(1):70-77 https://doi.org/10.7318/KJFC/2013.28.1.070
- Joo SY, Kim O, Jeon H, Choi H. 2013. Antioxidant activity and quality characteristics of cookies prepared with acorn (Quercus species) powder. Korean J. Food Cook. Sci., 29(2):177-184 https://doi.org/10.9724/kfcs.2013.29.2.177
- Kang J, Kang M, Shin J, Park J, Kim D, Chung S, Shin J. 2017. Antioxidant and antidiabetic activities of various solvent extracts from Stachys sieboldii Miq. Korean J. Food Preserv., 24(5):615-622 https://doi.org/10.11002/KJFP.2017.24.5.615
- Kim JY, Kim SY, Kwon HM, Kim CH, Lee SJ, Park SC, Kim KH. 2014. Comparison of antioxidant and anti-inflammatory activity on chestnut, chestnut shell and leaves of Castanea crenata extracts. Korean J. Medicinal Crop Sci., 22(1):8-16 https://doi.org/10.7783/KJMCS.2014.22.1.8
- Kim MJ, Park EJ. 2011. Feature analysis of different In vitro antioxidant capacity assays and their application to fruit and vegetable samples. J. Korean Soc. Food Sci. Nutr., 40(7):1053-1062 https://doi.org/10.3746/JKFN.2011.40.7.1053
- Kim OS, Ryu HS, Choi HY. 2012. Antioxidant activity and quality characteristics of acorn (Quercus Autissima Carruther) cookies. J. Korean Soc. Food Cult., 27(2):225-232 https://doi.org/10.7318/KJFC/2012.27.2.225
- Kim SM, Kim EJ, Cho YS, Sung SK. 1999. Antioxidants of pine needle extracts according to preparation method. Korean J. Food Sci. Technol., 31(2):527-534
- Kim SM, Park JH, Boo HO, Song SG, Park HY. 2017. In vitro comparision of biological activities of solvent fraction extracts from Orostachys japonicus. Korean J. Plant Res., 30(2):133-143 https://doi.org/10.7732/KJPR.2017.30.2.133
- Korea Centers for Disease Control and Prevention. 2019. 2018 National health and nutrition survey. Cheongju, Korea centers for Disease control and Prevention. 1358
- La Anh H, Xuan TD, Thuy D, Thi N, Quan NV, Trang LT. 2020. Antioxidant and α-amylase inhibitory activities and phytocompounds of Clausena Indica fruits. Medicines, 7(3):10 https://doi.org/10.3390/medicines7030010
- Laybutt DR, Kaneto H, Hasenkamp W, Grey S, Jonas J, Sgroi DC, Groff A, Ferran C, Bonner-Weir S, Sharma A. 2002. Increased expression of antioxidant and antiapoptotic genes in islets that may contribute to β-cell survival during chronic hyperglycemia. Diabetes, 51(2):413-423 https://doi.org/10.2337/diabetes.51.2.413
- Lee DJ, Lee JY. 2004. Antioxidant activity by DPPH assay. Korean J. Crop Sci., 49(spc1):187-194
- Lee EH, Hong SH, Cho YJ. 2017. Biological activities of extracts from okkwang (Castanea Crenata) chestnut bur. J. Korean Soc. Food Sci. Nutr., 46(5):572-580 https://doi.org/10.3746/JKFN.2017.46.5.572
- Lee HW. 2008. DPP-4 Inhibitors and the relations between rosiglitazone and the risk of myocardial infarction. J. Korean Med. Assoc., 51(4):371-376 https://doi.org/10.5124/jkma.2008.51.4.371
- Lee JH, Lee SR. 1994. Some physiological activity of phenolic substances in plant foods. Korean J. Food Sci. Technol., 26(3):317-323
- Lee YM. 1995. We really need to know our one hundred kinds of trees. Hyeonamsa, Seoul, Korean, 394-398
- Lee YL, Huang GW, Liang ZC, Mau JL. 2007. Antioxidant properties of three extracts from Pleurotus citrinopileatus. LWT - Food Sci. Technol., 40(5):823-833 https://doi.org/10.1016/j.lwt.2006.04.002
- Lee YR. 2020. Antioxidant and α-amylase inhibitory activity of 70% ethanolic extract from Morinda citrifolia L.(Noni). Korean J. Food & Nutr., 33(2):210-214. https://doi.org/10.9799/KSFAN.2020.33.2.210
- Lopes GKB, Schulman HM, Hermes-Lima M. 1999. Polyphenol tannic acid inhibits hydroxyl radical formation from fenton reaction by complexing ferrous ions. Biochim. Biophys. Acta - Gen. Subj., 1472(1-2):142-152 https://doi.org/10.1016/S0304-4165(99)00117-8
- Oliveira VB, Araujo RL, Eidenberger T, Brandao MG. 2018. Chemical composition and inhibitory activities on dipeptidyl peptidase IV and pancreatic lipase of two underutilized species from the Brazilian Savannah: Oxalis cordata A. St.-Hil. and Xylopia aromatica (Lam.) Mart. Food Res. Int., 105:989-995 https://doi.org/10.1016/j.foodres.2017.11.079
- Oyaizu M. 1986. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Japan. J. Nutr. diet., 44(6):307-315 https://doi.org/10.5264/eiyogakuzashi.44.307
- Peng Y, Ye J, Kong J. 2005. Determination of phenolic compounds in Perilla frutescens L. by capillary electrophoresis with electrochemical detection. J. Agric. Food Chem., 53(21):8141-8147 https://doi.org/10.1021/jf051360e
- Rakic S, Povrenovic D, Tesevic V, Simic M, Maletic R. 2006. Oak acorn, polyphenols and antioxidant activity in functional food. J. Food Eng., 74(3):416-423 https://doi.org/10.1016/j.jfoodeng.2005.03.057
- Salimifar M, Fatehi-Hassanabad Z, Fatehi M. 2013. A review on natural products for controlling type 2 diabetes with an emphasis on their mechanisms of actions. Curr. Diabetes Rev., 9(5):402-411 https://doi.org/10.2174/15733998113099990076
- Sekowski S, Veiko A, Olchowik-Grabarek E, Dubis A, Wilczewska AZ, Markiewicz KH, Zavodnik IB, Lapshina E, Dobrzynska I, Abdulladjanova N. 2021. Hydrolysable tannins change physicochemical parameters of lipid nano-vesicles and reduce DPPH radical-Experimental studies and quantum chemical analysis. Biochim. Biophys. Acta - Biomembr., 1864(1):183778
- Shim T, Jin Y, Sa J, Shin I, Heo S, Wang M. 2004. Studies for component analysis and antioxidative evaluation in acorn powders. Korean J. Food Sci. Technol., 36(5):800-803
- Shin DH, Cho JS, Jung ST. 1993. Study on Antioxidant effects of acorn (Quercus Acutissima Carruthers) components; I. the separation and identification of tannin components from acorn. J. Korean Appl. Sci. Technol., 10(1):93-101
- Sin DH, Jo JS. 1991. Antioxidative activity of various solvent extracts of quercisemen to linoleic Acid. J. Korean Appl. Sci. Technol., 8(1):79-83
- Swain T, Hillis WE. 1959. The phenolic constituents of Prunus domestica. I.-The quantitative analysis of phenolic constituents. J. Sci. Food Agric., 10(1):63-68 https://doi.org/10.1002/jsfa.2740100110
- Takahama U, Hirota S. 2018. Interactions of flavonoids with α-amylase and starch slowing down its digestion. Food Funct., 9(2):677-687 https://doi.org/10.1039/C7FO01539A
- Teng H, Chen L. 2017. α-Glucosidase and α-amylase inhibitors from seed oil: A review of liposoluble substance to treat diabetes. Crit. Rev. Food Sci. Nutr., 57(16):3438-3448 https://doi.org/10.1080/10408398.2015.1129309
- Wu M, Yang Q, Wu Y, Ouyang J. 2021. Inhibitory effects of acorn (Quercus Variabilis Blume) kernel-derived polyphenols on the activities of α-amylase, α-glucosidase, and dipeptidyl peptidase IV. Food Biosci., 43:101224 https://doi.org/10.1016/j.fbio.2021.101224
- Yang S, Youn K, No H, Lee S, Hong J. 2011. Optimization of extraction conditions for mate (Ilex paraguarensis) ethanolic extracts. Korean J. Food Preserv., 18(3):319-327 https://doi.org/10.11002/KJFP.2011.18.3.319
- Yim M, Hong T, Lee J. 2006. Antioxidant and antimicrobial activities of fermentation and ethanol extracts of pine needles (Pinus densiflora). Food Sci. Biotechnol., 15(4):582-588
- Yoon CW. 2016. Trees and shrubs in Yesan Campus, Kongju National University: 700 Kinds of Trees that Recognize Afforestation, Ecology, and use Together. Geobook, Seoul, korea, pp 184-200
- Zhu Y, Yin L, Cheng Y, Yamaki K, Mori Y, Su Y, Li L. 2008. Effects of sources of carbon and nitrogen on production of α-Glucosidase inhibitor by a newly isolated strain of Bacillus subtilis B2. J. Food Chem., 109(4):737-742 https://doi.org/10.1016/j.foodchem.2008.01.006