DOI QR코드

DOI QR Code

Antioxidant and Antidiabetic Activities of Extracts from Quercus serrata Thunb and Q. acutissima Carruther

도토리(Quercus serrata Thunb)와 상수리(Quercus acutissima Carruther) 추출물의 항산화와 항당뇨 활성 연구

  • Chu, Ji-Hye (Department of Food Service Management and Nutrition, Kongju National University) ;
  • Choi, Jin-Hee (Department of Food Service Management and Nutrition, Kongju National University)
  • Received : 2021.10.01
  • Accepted : 2021.10.29
  • Published : 2021.10.30

Abstract

This study was conducted to analyze the antioxidant and antidiabetic activities of acorns according to the types of Quercus serrata Thunb (QST) and Q. acutissima Carruther (QAC). The total polyphenol contents of the extracts from QST and QAC were 220.59 and 320.96 mg GAE/g, respectively. The content of total polyphenol of QAC was higher than that of QAC (p<0.001). DPPH (2,2 Diphenyl 1 picrylhydrazyl) radical scavenging activity, reducing power and superoxide dismutase (SOD)-like activity were increased in a concentration-dependent manner by both acorn extracts, and QAC showed high activity in all antioxidant experiments (p<0.05). The inhibitory activities of α-glucosidase and α-amylase were also increased in a concentration-dependent manner, and QAC showed higher inhibitory activity than QST (p<0.05). Our study indicates that QST and QAC are functional food materials with high antioxidant and antidiabetic activities. In addition, QAC has a higher physiological activity than QST.

Keywords

References

  1. Baron AD. 1998. Postprandial hyperglycaemia and α-glucosidase inhibitors. Diabetes Res. Clin. Pract., 40:S51-S55 https://doi.org/10.1016/S0168-8227(98)00043-6
  2. Beauchamp C, Fridovich I. 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem., 44(1):276-287 https://doi.org/10.1016/0003-2697(71)90370-8
  3. Bhandari MR, Jong-Anurakkun N, Hong G, Kawabata J. 2008. α-glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb pakhanbhed (Bergenia Ciliata, Haw.). Food Chem., 106(1):247-252 https://doi.org/10.1016/j.foodchem.2007.05.077
  4. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature, 181(4617):1199-1200 https://doi.org/10.1038/1811199a0
  5. Custodio L, Patarra J, Albericio F, da Rosa Neng N, Nogueira JMF, Romano A. 2015. Phenolic composition, antioxidant potential and in Vitro inhibitory activity of leaves and acorns of Quercus Suber on key enzymes relevant for hyperglycemia and Alzheimer's disease. Ind. Crops Prod., 64:45-51 https://doi.org/10.1016/j.indcrop.2014.11.001
  6. Dehghan H, Salehi P, Amiri MS. 2018. Bioassay-guided purification of α-amylase, α-glucosidase inhibitors and DPPH radical scavengers from roots of Rheum turkestanicum. Ind. Crops Prod., 117:303-309 https://doi.org/10.1016/j.indcrop.2018.02.086
  7. Delgado T, Malheiro R, Pereira JA, Ramalhosa E. 2010. Hazelnut (Corylus Avellana L.) Kernels as a source of antioxidants and their potential in relation to other nuts. Ind. Crops Prod., 32(3):621-626 https://doi.org/10.1016/j.indcrop.2010.07.019
  8. Hong JH. 2021. Diabetes and vitamin D. J. Korean Diabetes, 22(1):6-11 https://doi.org/10.4093/jkd.2021.22.1.6
  9. Ishartati E, Roeswitawati D, Rohman S. 2021. α-Glucosidase and α-amylase inhibitory activities of jambolan (Syzygium Cumini (L.) SKEELS) fruit and seed. Atlantis Press, 14:256-260
  10. Je HJ, Shin KO. 2016. A review of the general characteristics and functions of acorns. Korean J. Food Nutr., 29(1):58-64 https://doi.org/10.9799/KSFAN.2016.29.1.058
  11. Ji YJ, Lee EY, Lee JY, Lee YJ, Lee SE, Seo KH, Kim HD. 2020. Antioxidant and anti-diabetic effects of Agastache rugosa extract. J. East. Asian Soc. Diet. Life, 30:297-305 https://doi.org/10.17495/easdl.2020.8.30.4.297
  12. Joo SY. 2013. Antioxidant activity and quality characteristics of chestnut cookies. J. Korean Soc. Food Cult., 28(1):70-77 https://doi.org/10.7318/KJFC/2013.28.1.070
  13. Joo SY, Kim O, Jeon H, Choi H. 2013. Antioxidant activity and quality characteristics of cookies prepared with acorn (Quercus species) powder. Korean J. Food Cook. Sci., 29(2):177-184 https://doi.org/10.9724/kfcs.2013.29.2.177
  14. Kang J, Kang M, Shin J, Park J, Kim D, Chung S, Shin J. 2017. Antioxidant and antidiabetic activities of various solvent extracts from Stachys sieboldii Miq. Korean J. Food Preserv., 24(5):615-622 https://doi.org/10.11002/KJFP.2017.24.5.615
  15. Kim JY, Kim SY, Kwon HM, Kim CH, Lee SJ, Park SC, Kim KH. 2014. Comparison of antioxidant and anti-inflammatory activity on chestnut, chestnut shell and leaves of Castanea crenata extracts. Korean J. Medicinal Crop Sci., 22(1):8-16 https://doi.org/10.7783/KJMCS.2014.22.1.8
  16. Kim MJ, Park EJ. 2011. Feature analysis of different In vitro antioxidant capacity assays and their application to fruit and vegetable samples. J. Korean Soc. Food Sci. Nutr., 40(7):1053-1062 https://doi.org/10.3746/JKFN.2011.40.7.1053
  17. Kim OS, Ryu HS, Choi HY. 2012. Antioxidant activity and quality characteristics of acorn (Quercus Autissima Carruther) cookies. J. Korean Soc. Food Cult., 27(2):225-232 https://doi.org/10.7318/KJFC/2012.27.2.225
  18. Kim SM, Kim EJ, Cho YS, Sung SK. 1999. Antioxidants of pine needle extracts according to preparation method. Korean J. Food Sci. Technol., 31(2):527-534
  19. Kim SM, Park JH, Boo HO, Song SG, Park HY. 2017. In vitro comparision of biological activities of solvent fraction extracts from Orostachys japonicus. Korean J. Plant Res., 30(2):133-143 https://doi.org/10.7732/KJPR.2017.30.2.133
  20. Korea Centers for Disease Control and Prevention. 2019. 2018 National health and nutrition survey. Cheongju, Korea centers for Disease control and Prevention. 1358
  21. La Anh H, Xuan TD, Thuy D, Thi N, Quan NV, Trang LT. 2020. Antioxidant and α-amylase inhibitory activities and phytocompounds of Clausena Indica fruits. Medicines, 7(3):10 https://doi.org/10.3390/medicines7030010
  22. Laybutt DR, Kaneto H, Hasenkamp W, Grey S, Jonas J, Sgroi DC, Groff A, Ferran C, Bonner-Weir S, Sharma A. 2002. Increased expression of antioxidant and antiapoptotic genes in islets that may contribute to β-cell survival during chronic hyperglycemia. Diabetes, 51(2):413-423 https://doi.org/10.2337/diabetes.51.2.413
  23. Lee DJ, Lee JY. 2004. Antioxidant activity by DPPH assay. Korean J. Crop Sci., 49(spc1):187-194
  24. Lee EH, Hong SH, Cho YJ. 2017. Biological activities of extracts from okkwang (Castanea Crenata) chestnut bur. J. Korean Soc. Food Sci. Nutr., 46(5):572-580 https://doi.org/10.3746/JKFN.2017.46.5.572
  25. Lee HW. 2008. DPP-4 Inhibitors and the relations between rosiglitazone and the risk of myocardial infarction. J. Korean Med. Assoc., 51(4):371-376 https://doi.org/10.5124/jkma.2008.51.4.371
  26. Lee JH, Lee SR. 1994. Some physiological activity of phenolic substances in plant foods. Korean J. Food Sci. Technol., 26(3):317-323
  27. Lee YM. 1995. We really need to know our one hundred kinds of trees. Hyeonamsa, Seoul, Korean, 394-398
  28. Lee YL, Huang GW, Liang ZC, Mau JL. 2007. Antioxidant properties of three extracts from Pleurotus citrinopileatus. LWT - Food Sci. Technol., 40(5):823-833 https://doi.org/10.1016/j.lwt.2006.04.002
  29. Lee YR. 2020. Antioxidant and α-amylase inhibitory activity of 70% ethanolic extract from Morinda citrifolia L.(Noni). Korean J. Food & Nutr., 33(2):210-214. https://doi.org/10.9799/KSFAN.2020.33.2.210
  30. Lopes GKB, Schulman HM, Hermes-Lima M. 1999. Polyphenol tannic acid inhibits hydroxyl radical formation from fenton reaction by complexing ferrous ions. Biochim. Biophys. Acta - Gen. Subj., 1472(1-2):142-152 https://doi.org/10.1016/S0304-4165(99)00117-8
  31. Oliveira VB, Araujo RL, Eidenberger T, Brandao MG. 2018. Chemical composition and inhibitory activities on dipeptidyl peptidase IV and pancreatic lipase of two underutilized species from the Brazilian Savannah: Oxalis cordata A. St.-Hil. and Xylopia aromatica (Lam.) Mart. Food Res. Int., 105:989-995 https://doi.org/10.1016/j.foodres.2017.11.079
  32. Oyaizu M. 1986. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Japan. J. Nutr. diet., 44(6):307-315 https://doi.org/10.5264/eiyogakuzashi.44.307
  33. Peng Y, Ye J, Kong J. 2005. Determination of phenolic compounds in Perilla frutescens L. by capillary electrophoresis with electrochemical detection. J. Agric. Food Chem., 53(21):8141-8147 https://doi.org/10.1021/jf051360e
  34. Rakic S, Povrenovic D, Tesevic V, Simic M, Maletic R. 2006. Oak acorn, polyphenols and antioxidant activity in functional food. J. Food Eng., 74(3):416-423 https://doi.org/10.1016/j.jfoodeng.2005.03.057
  35. Salimifar M, Fatehi-Hassanabad Z, Fatehi M. 2013. A review on natural products for controlling type 2 diabetes with an emphasis on their mechanisms of actions. Curr. Diabetes Rev., 9(5):402-411 https://doi.org/10.2174/15733998113099990076
  36. Sekowski S, Veiko A, Olchowik-Grabarek E, Dubis A, Wilczewska AZ, Markiewicz KH, Zavodnik IB, Lapshina E, Dobrzynska I, Abdulladjanova N. 2021. Hydrolysable tannins change physicochemical parameters of lipid nano-vesicles and reduce DPPH radical-Experimental studies and quantum chemical analysis. Biochim. Biophys. Acta - Biomembr., 1864(1):183778
  37. Shim T, Jin Y, Sa J, Shin I, Heo S, Wang M. 2004. Studies for component analysis and antioxidative evaluation in acorn powders. Korean J. Food Sci. Technol., 36(5):800-803
  38. Shin DH, Cho JS, Jung ST. 1993. Study on Antioxidant effects of acorn (Quercus Acutissima Carruthers) components; I. the separation and identification of tannin components from acorn. J. Korean Appl. Sci. Technol., 10(1):93-101
  39. Sin DH, Jo JS. 1991. Antioxidative activity of various solvent extracts of quercisemen to linoleic Acid. J. Korean Appl. Sci. Technol., 8(1):79-83
  40. Swain T, Hillis WE. 1959. The phenolic constituents of Prunus domestica. I.-The quantitative analysis of phenolic constituents. J. Sci. Food Agric., 10(1):63-68 https://doi.org/10.1002/jsfa.2740100110
  41. Takahama U, Hirota S. 2018. Interactions of flavonoids with α-amylase and starch slowing down its digestion. Food Funct., 9(2):677-687 https://doi.org/10.1039/C7FO01539A
  42. Teng H, Chen L. 2017. α-Glucosidase and α-amylase inhibitors from seed oil: A review of liposoluble substance to treat diabetes. Crit. Rev. Food Sci. Nutr., 57(16):3438-3448 https://doi.org/10.1080/10408398.2015.1129309
  43. Wu M, Yang Q, Wu Y, Ouyang J. 2021. Inhibitory effects of acorn (Quercus Variabilis Blume) kernel-derived polyphenols on the activities of α-amylase, α-glucosidase, and dipeptidyl peptidase IV. Food Biosci., 43:101224 https://doi.org/10.1016/j.fbio.2021.101224
  44. Yang S, Youn K, No H, Lee S, Hong J. 2011. Optimization of extraction conditions for mate (Ilex paraguarensis) ethanolic extracts. Korean J. Food Preserv., 18(3):319-327 https://doi.org/10.11002/KJFP.2011.18.3.319
  45. Yim M, Hong T, Lee J. 2006. Antioxidant and antimicrobial activities of fermentation and ethanol extracts of pine needles (Pinus densiflora). Food Sci. Biotechnol., 15(4):582-588
  46. Yoon CW. 2016. Trees and shrubs in Yesan Campus, Kongju National University: 700 Kinds of Trees that Recognize Afforestation, Ecology, and use Together. Geobook, Seoul, korea, pp 184-200
  47. Zhu Y, Yin L, Cheng Y, Yamaki K, Mori Y, Su Y, Li L. 2008. Effects of sources of carbon and nitrogen on production of α-Glucosidase inhibitor by a newly isolated strain of Bacillus subtilis B2. J. Food Chem., 109(4):737-742 https://doi.org/10.1016/j.foodchem.2008.01.006