DOI QR코드

DOI QR Code

A Study on the Natural Interspecific Hybrid between Rhodeus notatus and R. ocellatus

떡납줄갱이 Rhodeus notatus와 흰줄납줄개 R. ocellatus의 자연 종간잡종에 관한 연구

  • Yun, Bong Han (Department of Life Science, Soonchunhyang University) ;
  • Sung, Mu Sung (Department of Life Science, Soonchunhyang University) ;
  • Kim, Yong Hwi (Department of Life Science, Soonchunhyang University) ;
  • Bang, In-Chul (Department of Life Science, Soonchunhyang University)
  • 윤봉한 (순천향대학교 생명과학과) ;
  • 성무성 (순천향대학교 생명과학과) ;
  • 김용휘 (순천향대학교 생명과학과) ;
  • 방인철 (순천향대학교 생명과학과)
  • Received : 2021.07.21
  • Accepted : 2021.09.17
  • Published : 2021.09.30

Abstract

Three specimens, presumed to be natural hybrids between Rhodeus notatus and R. ocellatus, were collected from Onyangcheon Stream area, Jwabu-dong, Asan-si, Chungcheongnamdo, the Republic of Korea, and morphological and phylogenetic analyses were performed to clearly identify their parent species. The body color of the three natural hybrids was light greenish-brown on dorsal side, and the size of red area on the upper front of the dorsal fin and the outer margin of the anal fin generally showed intermediate characters between the parent species, R. notatus and R. ocellatus. Among the measurement and meristic characters, the ratio of prepectoral length and preanal length in the standard length, and the ratio of snout length, interorbital width, length of caudal peduncle and depth of caudal peduncle in the head length, and the number of longitudinal row scales were analyzed as the unique characters of natural hybrids. In the rag1 gene of nuclear DNA, the three natural hybrids were analyzed to be reflected all the single nucleotide polymorphism sites between R. notatus and R. ocellatus, and in the phylogenetic tree using the cytb gene of mitochondrial DNA, they formed the same genetic clade as R. notatus. Therefore, three specimens, presumed to be natural hybrids analyzed in this study were identified as interspecific hybrids between female R. notatus and male R. ocellatus.

떡납줄갱이 Rhodeus notatus와 흰줄납줄개 R. ocellatus 간의 자연 잡종으로 추정되는 3개체를 충청남도 아산시 좌부동 곡교천의 지류인 온양천 일대에서 채집하였으며, 이들의 부모종을 명확히 판별하기 위하여 형태학적 및 분자계통학적 분석을 수행하였다. 자연 잡종 3개체의 체색은 등 쪽이 연한 녹갈색으로 떡납줄갱이의 연한 갈색과 흰줄납줄개의 진한 녹갈색의 중간 색상이었고, 등지느러미 앞쪽 상단 및 뒷지느러미 바깥 가장자리에 붉은색을 나타내는 면적은 떡납줄갱이와 흰줄납줄개 간의 중간 크기로 나타나 전반적으로 부모종 간의 중간형질을 나타냈다. 계측 및 계수형질의 경우, 자연 잡종은 체장에 대한 가슴지느러미 기점거리의 비, 뒷지느러미 기점거리의 비와 두장에 대한 문장의 비, 양안 간격의 비, 미병장의 비, 미병고의 비 그리고 종렬비늘수 등에서 이들의 고유한 형질이 나타난 것으로 분석되었다. 핵 DNA의 rag1 유전자 영역에서 자연 잡종 3개체는 떡납줄갱이와 흰줄납줄개 간의 단일염기다형성 부위를 모두 반영하는 것으로 분석되었으며, 미토콘드리아 DNA의 cytb 유전자 영역을 이용한 분자계통도에서는 떡납줄갱이와 동일한 유전적 clade를 형성하였다. 따라서, 본 연구에서 분석한 자연 잡종 추정 개체들은 암컷 떡납줄갱이와 수컷 흰줄납줄개 간의 종간 잡종으로 판별되었다.

Keywords

Acknowledgement

이 논문은 순천향대학교의 연구비를 지원받아 수행된 연구입니다.

References

  1. Abbott, R., D. Albach, S. Ansell, J.W. Arntzen, S.J.E. Baird, N. Bierne, J. Boughman, A. Brelsford, C.A. Buerkle, R. Buggs, R.K. Butlin, U. Dieckmann, F. Eroukhmanoff, A. Grill, S.H. Cahan, J.S. Hermansen, G. Hewitt, A.G. Hudson, C. Jiggins, J. Jones, B. Keller, T. Marczewski, J. Mallet, P. Martinez-Rodriguez, M. Most, S. Mullen, R. Nichols, A.W. Nolte, C. Parisod, K. Pfennig, A.M. Rice, M.G. Ritchie, B. Seifert, C.M. Smadja, R. Stelkens, J.M. Szymura, R. Vainola, J.B.W. Wolf and D. Zinner. 2013. Hybridization and speciation. J. Evol. Biol., 26: 229-246. https://doi.org/10.1111/j.1420-9101.2012.02599.x.
  2. Allendorf, F.W. and R.S. Waples. 1996. Conservation and genetics of salmonid fishes. In: Avise, J.C. and J.L. Hamrick (eds.), Conservation Genetics: Case Histories from Nature. Chapman and Hall, New York, U.S.A., pp. 238-280.
  3. Armbruster, J.W. 2012. Standardized measurements, landmarks, and meristic counts for cypriniform fishes. Zootaxa, 3586: 8-16. https://doi.org/10.11646/zootaxa.3586.1.3.
  4. Campton, D.E. 1987. Natural hybridization and introgression in fishes: Methods of detection and genetic interpretations. In: Ryman, N. and F. Utter (eds.), Population Genetics and Fishery Management. University of Washington Press, Seattle, U.S.A., pp. 161-192.
  5. Cebrat, M., A. Cebula, A. Laszkiewicz, M. Kasztura, A. Miazek and P. Kisielow. 2008. Mechanism of lymphocyte-specific inactivation of RAG-2 intragenic promoter of NWC: implications for epigenetic control of RAG locus. Mol. immunol., 45: 2297-2306. https://doi.org/10.1016/j.molimm.2007.11.009.
  6. Chae, B.S., H.B. Song and J.Y. Park. 2019. A field guide to the fresh-water fishes of Korea. LG Evergreen Foundation, Seoul, Korea, 355pp.
  7. Chang, C.H., F. Li, K.T. Shao, Y.S. Lin, T. Morosawa, S.M. Kim, H.Y. Koo, W. Kim, J.S. Lee, S. He, C. Smith, M. Reichard, M. Miya, T. Sado, K. Uehara, S. Lavoue, W.J. Chen and R.L. Mayden. 2014. Phylogenetic relationships of Acheilognathidae (Cypriniformes: Cyprinoidea) as revealed from evidence of both nuclear and mitochondrial gene sequence variation: evidence for necessary taxonomic revision in the family and the identification of cryptic species. Mol. Phylogenet. Evol., 81: 182-194. https://doi.org/10.1016/j.ympev.2014.08.026.
  8. Corush, J.B., B.M. Fitzpatrick, E.L. Wolfe and B.P. Keck. 2021. Breeding behaviour predicts patterns of natural hybridization in north American minnows(Cyprinidae). J. Evol. Biol., 34: 486-500. https://doi.org/10.1111/jeb.13751.
  9. Darriba, D., G.L. Taboada, R. Doallo and D. Posada. 2012. jModel Test 2: more models, new heuristics and parallel computing. Nat. Methods, 9: 772. https://doi.org/10.1038/nmeth.2109.
  10. DeMarais, B.D. and W.L. Minckley. 1992. Hybridization in native Cyprinid fishes, Gila ditaenia and Gila sp., in northwestern Mexico. Copeia, 1992: 697-703. https://doi.org/10.2307/1446145.
  11. Foresti, F.P., D.T. Hashimoto, F.D. Prado, J.A. Senhorini and F. Foresti. 2013. Genetic markers for the identification of hybrids among catfish species of the family Pimelodidae. J. Appl. Ichthyol., 29: 643-647. https://doi.org/10.1111/jai.12092.
  12. Gerber, A.S., C.A. Tibbets and T.E. Dowling. 2001. The role of introgressive hybridization in the evolution of the Gila robusta complex (Teleostei: Cyprinidae). Evolution, 55: 2028-2039. https://doi.org/10.1111/j.0014-3820.2001.tb01319.x.
  13. Grant, P.R. and B.R. Grant. 1992. Hybridization of bird species. Science, 256: 193-197. https://doi.org/10.1126/science.256.5054.193.
  14. Guindon, S., J.F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk and O. Gascuel. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol., 59: 307-321. https://doi.org/10.1093/sysbio/syq010.
  15. Guindon, S. and O. Gascuel. 2003. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol., 52: 696-704. https://doi.org/10.1080/10635150390235520.
  16. Hata, H., Y. Uemura, K. Ouchi and H. Matsuba. 2019. Hybridization between an endangered freshwater fish and an introduced congeneric species and consequent genetic introgression. PLoS ONE, 14: e0212452. https://doi.org/10.1371/journal.pone.0212452.
  17. Hubbs, C.L. 1955. Hybridization between fish species in nature. Syst. Zool., 4: 1-20. https://doi.org/10.2307/2411933.
  18. Hubbs, C.L. and K.F. Lagler. 2004. Fishes of the Great Lakes region. The Unversity of Michigan Press, Ann Arbor, U.S.A., 29-40pp. https://doi.org/10.3998/mpub.17658.
  19. Jeon, H.B., D.Y. Kim, Y.J. Lee, H.G. Bae and H.Y. Suk. 2018. The genetic structure of Squalidus multimaculatus revealing the historical pattern of serial colonization on the tip of East Asian continent. Sci. Rep., 8: 10629. https://doi.org/10.1038/s41598-018-28340-x.
  20. Kang, E.J., C.H. Kim, I.S. Park, H. Yang and Y.C. Cho. 2006. Early developmental characteristics of induced hybrids between Rhodeus uyekii and R. notatus(Pisces: Cyprinidae). Korean J. Ichthyol., 18: 339-346.
  21. Kanoh, Y. 1996. Pre-oviposition ejaculation in externally fertilizing fish: how sneaker male rose bitterlings contrive to mate. Ethology, 102: 883-899. https://doi.org/10.1111/j.1439-0310.1996.tb01169.x.
  22. Kanoh, Y. 2000. Reproductive success associated with territoriality, sneaking, and grouping in male rose bitterlings, Rhodeus ocellatus(Pisces: Cyprinidae). Environ. Biol. Fishes, 57: 143-154. https://doi.org/10.1023/A:1004585405848.
  23. Karlsson, S., M. Hagen, L. Eriksen, K. Hindar, A.J. Jensen, C.G. de Leaniz, D. Cotter, G. Gudbergsson, K. Kahilainen, S. Gudjonsson, A. Romakkaniemi and N. Ryman. 2013. A genetic marker for the maternal identification of Atlantic salmon×brown trout hybrids. Conserv. Genet. Resour., 5: 47-49. https://doi.org/10.1007/s12686-012-9730-6.
  24. Katoh, K. and D.M. Standley. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol., 30: 772-780. https://doi.org/10.1093/molbev/mst010.
  25. Katoh, K., K. Misawa, K.I. Kuma and T. Miyata. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res., 30: 3059-3066. https://doi.org/10.1093/nar/gkf436.
  26. Kim, B.S., E.J. Kang, H. Jang and I.S. Park. 2012. Morphometric traits and cytogenetic analysis in induced cross and reciprocal hybrid between Rhodeus uyekii and R. notatus. Korean J. Ichthyol., 24: 151-159.
  27. Kim, H.S., S.W. Yun, H.T. Kim and J.Y. Park. 2015. Occurrence of a natural hybrid between Acheilognathus signifer and A. lanceolatus(Pisces: Cyprinidae). Korean J. Ichthyol., 27: 199-204.
  28. Kim, H.S., S.W. Yun, J.G. Ko and J.Y. Park. 2014. Occurrence of a natural intergeneric hybrid between Rhodeus pseudosericeus and Acheilognathus signifer (Pisces: Cyprinidae) from the Namhangang (river), Korea. Korean J. Ichthyol., 26: 153-158.
  29. Kim, I.S. and J.Y. Park. 2002. Freshwater Fishes of Korea. Kyohak Publishing Co. Ltd., Seoul, Korea, 466pp.
  30. Kim, Y.H., M.S. Sung, B.H. Yun and I.C. Bang. 2021. Occurrence of a natural intergeneric hybrid between a female Tanakia lanceolata and a male Rhodeus pseudosericeus (Cypriniformes: Cyprinidae) in Daecheoncheon stream flowing into the Yellow Sea in the Republic of Korea. Korean J. Ichthyol., 33: 45-46. https://doi.org/10.35399/ISK.33.2.1
  31. Kivisild, T. 2015. Maternal ancestry and population history from whole mitochondrial genomes. Investig. Genet., 6: 1-10. https://doi.org/10.1186/s13323-015-0022-2.
  32. Kwak, Y.H., K.Y. Kim, K.S. Kim and H.Y. Song. 2020. Occurrence of a natural interspecific hybrid between Rhodeus pseudosericeus and R. notatus in Sangcheon Stream of the Han River, Korea. Korean J. Ecol. Environ., 53: 275-285. https://doi.org/10.11614/ksl.2020.53.3.275.
  33. Lee, I.R., H. Yang, J.H. Kim, K.Y. Kim and I.C. Bang. 2009. Identification of a natural hybrid between the striped spine loach Cobitis tetralineata and the king spine loach Iksookimia longicorpa by analyzing mitochondrial COI and nuclear RAG1 sequences. Korean J. Ichthyol., 21: 287-290.
  34. Lopez, J.A., W.J. Chen and G. Orti. 2004. Esociform phylogeny. Copeia, 2004: 449-464. https://doi.org/10.1643/CG-03-087R1.
  35. Miyazawa, S., M. Okamoto and S. Kondo. 2010. Blending of animal colour patterns by hybridization. Nat. Commun., 1: 1-6. https://doi.org/10.1038/ncomms1071.
  36. Nagata, Y. 1976. Reproductive behaviour of a bitterling, Rhodeus ocellatus(Kner). Physiol. Ecol. Japan., 17: 85-90.
  37. Nelson, J.S., T.C. Grande and M.V.H. Wilson. 2016. Fishes of the world, 5th ed. John Wiley & Sons Inc., Hoboken, New Jersey, U.S.A., 707pp. https://doi.org/10.1002/9781119174844.
  38. Nikoljukin, M.J. 1972. Distant hybridization in acipenseridae and teleostei. Moskava, 335pp.
  39. Park, J.M. and K.H. Han. 2019. Early life history characteristics of an induced hybrid between Rhodeus uyekii and Rhodeus ocellatus. Korean J. Fish. Aquat. Sci., 52: 408-417. https://doi.org/10.5657/KFAS.2019.0408.
  40. Rambaut, A. 2018. FigTree. Version 1.4.4. Available at: http://tree.bio.ed.ac.uk/software-/figtree.
  41. Rhymer, J.M. and D. Simberloff. 1996. Extinction by hybridization and introgression. Annu. Rev. Ecol. Evol. Syst., 27: 83-109. https://doi.org/10.1146/annurev.ecolsys.27.1.83.
  42. Sakai, H. and K. Hamada. 1985. Electrophoretic discrimination of Tribolodon species(Cyprinidae) and the occurrence of their hybrids. J. Ichthyol., 32: 216-224. https://doi.org/10.11369/jji1950.32.216.
  43. Scribner K.T., K.S. Page and M.L. Bartron. 2000. Hybridization in freshwater fishes: a review of case studies and cytonuclear methods of biological inference. Rev. Fish Biol. Fish., 10: 293-323. https://doi.org/10.1023/A:1016642723238.
  44. Song, H.Y., J.H. Kim, I.Y. Seo and I.C. Bang. 2017. Species and hybrid identification of Genus Coreoleuciscus species in hwnag-ji stream, nakdong river basin in Korea. Korean J. Ichthyol., 29: 1-12.
  45. Soric, V.M. 2004. A natural hybrid of Leuciscus cephalus and Alburnus alburnus(Pisces, Cyprinidae) from the Ibar River, Western Serbia. Arch. Biol. Sci., 56: 23-32. https://doi.org/10.2298/abs0402023s.
  46. Uemura, Y., S. Yoshimi and H. Hata. 2018. Hybridization between two bitterling fish species in their sympatric range and a river where one species is native and the other is introduced. PLoS ONE, 13: e0203423. https://doi.org/10.1371/journal.pone.0203423.
  47. Wendel, J.F. 2000. Genome evolution in polyploids. Plant Mol. Biol., 42: 225-249. https://doi.org/10.1023/A:1006392424384.
  48. Witkowski, A., J. Kotusz, K. Wawer, J. Stefaniak, M. Popiolek and J. Blachuta. 2015. A natural hybrid of Leuciscus leuciscus (L.) and Alburnus alburnus (L.) (Osteichthyes: Cyprinidae) from the Bystrzyca River (Poland). Annal. Zool., 65: 287-293. https://doi.org/10.3161/00034541anz2015.65.2.010.