DOI QR코드

DOI QR Code

Pd/ZSM-5 촉매와 저온 플라즈마를 이용한 사과와 키위의 상온 저장 안정성 향상

Improvement of Storage Stability of Apple and Kiwi at Room Temperature Using Pd/ZSM-5 Catalyst and Nonthermal Plasma

  • 김승건 (제주대학교 생명화학공학과) ;
  • 이호원 (제주대학교 생명화학공학과) ;
  • 목영선 (제주대학교 생명화학공학과) ;
  • 유승민 (한국핵융합에너지연구원 플라즈마기술연구소) ;
  • 전형원 (한국핵융합에너지연구원 플라즈마기술연구소) ;
  • 김성봉 (한국핵융합에너지연구원 플라즈마기술연구소)
  • Kim, Seung-Geon (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Lee, Ho-Won (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Mok, Young Sun (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Ryu, Seungmin (Institute of Plasma Technology, Korea Institute of Fusion Energy) ;
  • Jeon, Hyeongwon (Institute of Plasma Technology, Korea Institute of Fusion Energy) ;
  • Kim, Seong Bong (Institute of Plasma Technology, Korea Institute of Fusion Energy)
  • 투고 : 2021.07.16
  • 심사 : 2021.09.17
  • 발행 : 2021.10.10

초록

본 연구에서는 촉매-플라즈마 반응기를 농산물(사과, 키위) 저장고에 적용하여 저장 중 발생되는 에틸렌을 제거하고자 하였다. 1 m3 유닛 컨테이너 2개를 제작하여 에틸렌을 처리하지 않는 대조군과 발생하는 에틸렌을 촉매와 플라즈마에 의해 처리하는 실험군으로 구분하여 상온에서의 장기 저장성을 비교하였다. 또한 실험군에는 곰팡이 등의 세균 증식을 억제하기 위하여 소량의 오존을 주입하였다. 상온에서 사과와 키위를 각각 50 day와 57 day 동안 저장하여 에틸렌 농도 변화, 경도, 당도, 산도, 및 손실율을 비교하였다. 저장기간 동안의 에틸렌 농도 변화는 대조군이 실험군에 비해 높게 나타나 실험군에서 에틸렌이 효과적으로 제거되는 것으로 나타났다. 저장 후의 경도, 당도 및 당산비는 저장 전에 비해 좋게 나타났으며, 특히 키위가 사과에 비해 높게 향상하였다. 또한 저장 종료 후, 대조군에서 사과와 키위의 손실율은 각각 10%와 54.1%로 나타났으나, 실험군에서의 손실율은 각각 6%와 34.8%로 나타났다. 따라서 실험군의 저장성이 대조군에 비해 좋게 나타났다.

A catalyst-plasma reactor was applied to the storage of agricultural products, e.g., apple and kiwi, to remove the ethylene generated during the storage. Two 1-m3 unit containers were prepared, and the long-term storage stability of the control group at room temperature was compared with that of the experimental group of which the produced ethylene was treated by the catalyst-plasma reactor. In case of the experimental group, a small amount of ozone was injected to the unit container to suppress the growth of microorganisms such as mold. The apples and kiwis were stored at room temperature for 50 and 57 days, respectively, and the changes in ethylene concentration, hardness, sugar content, acidity, and loss rate were compared. The ethylene concentration during the storage for the control group was higher than that for the experimental group, indicating that the ethylene was effectively removed. Hardness, sugar content, and sugar acid ratio after the storage were better than before the storage, and in particular, the storage stability of kiwifruit was improved significantly. In addition, after the storage, the loss rates of apples and kiwis in the control group were 10 and 54.1%, respectively, but the loss rates in the experimental group were 6 and 34.8%, respectively. Therefore, the storage stability of the experimental group was a lot better than that of the control group.

키워드

과제정보

본 연구는 전라북도 테크노파크의 지역수요맞춤형 R&D 지원사업 (CN10120JB001) 및 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행되었음 (2021R1A2C2011441).

참고문헌

  1. Y. P. Hong, Horticultural products and ethylene, Bulletin of food technology, 8, 27-33 (1995).
  2. Y. H. Kim and I. J. Lee, Influence of plant growth regulator application on seed germination of dandelion (Taraxacum officinale), Weed Turf. Sci., 2, 152-158 (2013). https://doi.org/10.5660/WTS.2013.2.2.152
  3. S. Janssen, K. Schmitt, M. Blanke, M. L. Bauersfeld, J. Wollenstein and W. Lang, Ethylene detection in fruit supply chains, Phil. Trans. R. Soc. A, 372, 20130311 (2021). https://doi.org/10.1098/rsta.2013.0311
  4. J. O. Jo, Y. J. Hyun and Y. S. Mok, Removal of ethylene generated during storage of 'Hogro' apple using plasma-catalytic and ozone treatment, J. Agric. Life Sci., 51, 193-204 (2017). https://doi.org/10.14397/jals.2017.51.1.193
  5. H. S. Chung and J. U. Choi, Production of ethylene and carbon dioxide in apples during CA storage, Korean J. Postharvest Sci. Technol., 6, 153-160 (1999).
  6. I. L. Choi, J. P. Baek and H. M. Kang, Identification of suitable film type and temperature for green and gold kiwifruit MA condition using non-perforated film, J. Agri. Life Environ. Sci., 25, 65-70 (2013).
  7. P. Kwanhong, B. S. Lim, J. S. Lee, H. J. Park and M. H. Choi, Effect of 1-MCP and temperature on the quality of Red-fleshed kiwifruit (Actinidia chinensis), Korean J. Hortic. Sci. Technol., 35, 199-209 (2017).
  8. H. L. Eum, E. J. Lee and S. J. Hong, Effect of NO treatment during shelf life of Hayward kiwifruit after storage at cold temperature, Korean J. Hortic. Sci. Technol., 32, 666-672 (2014). https://doi.org/10.7235/hort.2014.13109
  9. H. S. Chung, J. B. Lee and K. D. Moon, Effects of medicinal herb extracts and heat and coating treatments on the browning degree of fresh-cut apples, Korean J. Food Preserv., 19, 813-817 (2012). https://doi.org/10.11002/KJFP.2012.19.6.813
  10. J. D. Monzon, A. M. Pereyra, M. R. Gonzalez, M. S. Legnoverde, M. S. Moreno, N. Gargiulo, A. Peluso, P. Aprea, D. Caputo, and E. I. Basaldella, Ethylene adsorption onto thermally treated AgA-Zeolite, Appl. Surf. Sci., 542, 148748 (2021). https://doi.org/10.1016/j.apsusc.2020.148748
  11. I. S. Minas, A. R. Vicentec, A. P. Dhanapal, G. A. Manganaris, V. Goulas, M. Vasilakakis, C. H. Crisosto and A. Molassiotis, Ozone-induced kiwifruit ripening delay is mediated by ethylene biosynthesis inhibition and cell wall dismantling regulation, Plant Sci., 229, 76-85 (2014). https://doi.org/10.1016/j.plantsci.2014.08.016
  12. T. H. Chang, L. C. Wu, Y. T You and Y. C. Chung, Removal of ethylene and bioaerosol by chlorine dioxide using a chemical scrubbing system in a fruit and vegetable storage facility, J. Environ. Sci. Health A: Tox. Hazard. Subst. Environ. Eng., 44, 258-64 (2009). https://doi.org/10.1080/10934520802597861
  13. M. W. Cho, S. Yoon, Y. K. Park, W. C. Choi, H. Y. Kim S. park and C. W. Lee, Removal of ethylene over KMnO4/silica-alumina : Effect of synthesis methods and reaction temperature, J. Korean Ind. Chem., 20, 407-410 (2009).
  14. S. B. Lee, J. O. Jo, D. L. Jang and Y. D. Mok, Decomposition of ethylene using a hybrid catalyst-packed bed plasma reactor system, J. KOSAE, 30, 577-585 (2014). https://doi.org/10.5572/KOSAE.2014.30.6.577
  15. Y. S. Mok, S. G. Kim, J. Han, D. B. Nguyen, H. W. Lee, H. Jeon and S. B. Kim, Removal of dilute ethylene using repetitive cycles of adsorption and plasma-catalytic oxidation over Pd/ZSM-5 catalyst, J. Phys. D: Appl. Phys., 53, 334002 (2020). https://doi.org/10.1088/1361-6463/ab79d9
  16. H. W. Lee, H. Lee, and Y.-K. Park, Decomposition of odor pollutant acetaldehyde using Mn loaded microporous zeolites, Appl. Chem. Eng., 31, 57-60 (2020). https://doi.org/10.14478/ace.2019.1109
  17. H. W. Park, S. H. Kim, H. S. Cha, Y. H. Kim and M. R. Kim, Effect of MA package on quality of 'Fuji' apple, Korean J. Food Preserv., 11, 468-471 (2004).
  18. H. W. Park, J. D. park, S. I. Hong and D. M. Kim, Changes in respiratory and quality characteristics of 'Tsugaru' apple by storage temperature, Korean J. Postharvest Sci. Technol., 7, 113-138 (2000).
  19. J. Yoo, S. Y. Lee, N. M. Win, S. I. Kwon, H. Y. Jung, Y. J. Cho and I. K. Kang, Effects of cold storage temperature treatments on fruit quality attributes in 'Hongro' apples, Korean J. Food Preserv., 25, 779-785 (2018). https://doi.org/10.11002/kjfp.2018.25.7.779
  20. P. Bourke, D. Ziuzina, L. Han, P. J. Cullen and B. F. Gilmore, Microbiological interactions with cold plasma, J. Appl. Microbiol., 123, 308-324 (2017). https://doi.org/10.1111/jam.13429
  21. N. Keller, M. N. Ducamp, D. Robert and V. Keller, Ethylene Removal and Fresh Product Storage: A Challenge at the Frontiers of Chemistry. Toward an Approach by Photocatalytic Oxidation, Chem. Rev., 113, 5029-5070 (2021). https://doi.org/10.1021/cr900398v
  22. S. Matsumoto, T. Obara and B. S. Luh, Changes in chemical constituents of kiwifruit during post-harvest ripening, J. Food Sci., 48, 607-611 (1983). https://doi.org/10.1111/j.1365-2621.1983.tb10800.x
  23. Y. J. Lim, C. K. Lim and S. H. Eom, Changes in bioactive bomponents, antioxidant radical scavenging activities, and cholinesterase inhibition activities in periodically harvested and post-harvested kiwifruits, Korean J. Hortic. Sci. Technol., 36, 569-581 (2018).
  24. Y. S. Park, M. H. Im and S. Gorinstein, Shelf life extension and antioxidant activity of 'Hayward' kiwi fruit as a result of prestorage conditioning and 1-methylcyclopropene treatment, J. Food Sci. Technol., 52, 2711-2720 (2015). https://doi.org/10.1007/s13197-014-1300-3
  25. Y. J. Yang and B. S. Lim, Temperature and length of cold storage affect the Quality Maintenance of fresh kiwifruit (Actinidia chinensis Planch), JKAIS, 18, 256-261 (2017).