DOI QR코드

DOI QR Code

The Study on the Effect of Phosphorous Poisoning of V/W/TiO2 Catalyst According to the Addition of Sb in NH3-SCR

NH3-SCR에서 Sb 첨가에 따른 V/W/TiO2 촉매의 Phosphorous 피독 영향 연구

  • Jung, Min Gie (Department of Environmental Energy Engineering, Graduate school of Kyonggi University) ;
  • Shin, Jung Hun (Department of Environmental Energy Engineering, Graduate school of Kyonggi University) ;
  • Lee, Yeon Jin (Department of Environmental Energy Engineering, Graduate school of Kyonggi University) ;
  • Hong, Sung Chang (Department of Environmental Energy Engineering, Kyonggi University)
  • 정민기 (경기대학교 일반대학원 환경에너지공학과) ;
  • 신중훈 (경기대학교 일반대학원 환경에너지공학과) ;
  • 이연진 (경기대학교 일반대학원 환경에너지공학과) ;
  • 홍성창 (경기대학교 환경에너지공학과)
  • Received : 2021.07.20
  • Accepted : 2021.08.12
  • Published : 2021.10.10

Abstract

A study using selective catalytic reduction (SCR) was conducted in conjunction with ammonia as a reducing agent for controlling nitrogen oxides, a typical secondary inducer of fine dust in the atmosphere. For NH3-SCR experiments, a commercial catalyst of V/W/TiO2 only and also V/W-Sb/TiO2 catalyst with Sb were used, and phosphorous durability was confirmed. As a result of NH3-SCR experiments, it was confirmed that the addition of Sb to V/W/TiO2 had durability against phosphorous. In addition, the physical and chemical properties were comparatively analyzed through BET, XPS, H2-TPR, NH3-TPD, and FT-IR analysis. From the anaylsis results, when Sb was added to V/W/TiO2 catalyst, P was also added resulting in the formation of SbPO4 and the generation of VOPO4 was suppressed. The phosphorous durability was confirmed by maintaining the redox characteristics of the catalyst before P was added.

본 연구는 대기 중 대표적인 미세먼지 2차 유발물질인 질소산화물 제어에 있어 암모니아를 환원제로 사용하는 선택적 촉매 환원법(Selective Catalytic Reduction; SCR)을 이용한 연구를 수행하였다. NH3-SCR 실험은 상용촉매인 V/W/TiO2와 Sb를 첨가한 V/W-Sb/TiO2 촉매를 사용하였으며 phosphorous에 의한 내피독성을 확인하였다. NH3-SCR 실험 결과, Sb의 첨가는 P에 대한 내구성을 갖는 것으로 확인되었다. 또한 이에 대한 원인을 확인하기 위하여 BET, XPS, H2-TPR, NH3-TPD, FT-IR 분석을 통해 물리·화학적 특성을 비교분석하였다. 분석 결과 V/W/TiO2 촉매에 Sb 첨가 시 P가 첨가됨에 따라 SbPO4 결합을 형성하고 VOPO4의 생성을 억제하였으며, P 첨가 전 촉매의 redox 특성을 유지함으로써 P에 대한 내피독성을 확인하였다.

Keywords

Acknowledgement

본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다(No. 20181110200060).

References

  1. M. Shelef, Selective Catalytic Reduction of NOx with N-free Reductants, Chem. Rev., 95(1), 209-225 (1995). https://doi.org/10.1021/cr00033a008
  2. V. I. Parvulescu, P. Grange, and B. Delmon, Catalytic Removal of NO, Catal. Today, 46(4), 233-316 (1998). https://doi.org/10.1016/S0920-5861(98)00399-X
  3. S.-U. Park and Lee, Y.-H., Spatial Distribution of Wet Deposition of Nitrogen in South Korea, Atmos. Environ., 36(4), 619-628 (2002). https://doi.org/10.1016/S1352-2310(01)00489-7
  4. W. Song, Y. L. Wang, and W. Yang, Isotopic evaluation on relative contributions of major NOx sources to nitrate of PM2.5 in Beijing, Environ. Pollut., 248, 183-190 (2019). https://doi.org/10.1016/j.envpol.2019.01.081
  5. T. Boningari and P. G. Smirniotis, Impact of nitrogen oxides on the environment and human health : Mn-based materials for the NOx abatement, Curr. Opin. Chem. Eng., 13, 133-141 (2016). https://doi.org/10.1016/j.coche.2016.09.004
  6. H. Bosch and F. Janssen, Catalytic reduction of nitrogen oxides-a review on the fundamentals and technology, Catal. Today, 2(4), 369-531 (1990). https://doi.org/10.1016/0920-5861(88)80002-6
  7. L. J. Alemany, F. Berti, G. Busca, G. Ramis, D. Robba, G. P. Toledo, and M. Trombetta, Characterization and composition of commercial V2O5-WO3-TiO2 SCR catalyst, Appl. Catal. B: Environ., 10, 299-311 (1996). https://doi.org/10.1016/S0926-3373(96)00032-X
  8. T. R. C. Zezza, M. D. S. Castilho, and N. R. Stradiotto, Determination of phosphorous in biodiesel using 1: 12 phosphomolybdic modified electrode by cyclic voltammetry, Fuel, 95, 15-18 (2012). https://doi.org/10.1016/j.fuel.2011.12.035
  9. O. Krocher and M. Elsener, Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils, and urea solution: I. Catalytic studies, Appl. Catal. B: Environ., 77, 215-227 (2008). https://doi.org/10.1016/j.apcatb.2007.04.021
  10. R. G. Silver, M. O. Stefanick, and B. I. Todd, A study of chemical aging effects on HDD Fe-zeolite SCR catalyst, Catal. Today, 136, 28-33 (2008). https://doi.org/10.1016/j.cattod.2007.11.063
  11. Y. Liu, Z. Liu, B. Mnichowicz, A. V. Harinath, H. Li, and B. Bahrami, Chemical deactivation of commercial vanadium SCR catalysts in diesel emission control application, Chem. Eng. J., 287, 680-690 (2016). https://doi.org/10.1016/j.cej.2015.11.043
  12. J. P. Chen, M. A. Buzanowski, R. T. Yang, and J. E. Cichanowicz, Deactivation of the Vanadia Catalyst in the Selective Catalytic Reduction Process, Air Waste Manag. Assoc., 40, 1403-1409 (1990). https://doi.org/10.1080/10473289.1990.10466793
  13. X. Li, K. Li, Y. Peng, Y. Zhang, and D. Wang, Interaction of phosphorous with a FeTiOx catalyst for selective catalytic reduction of NOx with NH3: Influence on surface acidity and SCR mechanism, Chem. Eng. J., 347, 173-183 (2018). https://doi.org/10.1016/j.cej.2018.04.035
  14. F. Castellino, S. B. Rasmussen, and A. D. Jensen, Deactivation of vanadia-based commercial SCR catalysts by polyphosphoric acids, Appl. Catal. B: Environ., 83(1-2), 110-122 (2008). https://doi.org/10.1016/j.apcatb.2008.02.008
  15. J. Blanco, P. Avila, C. Barthelemy, A. Bahamonde, J. A. Odriozola, J. F. Garcia De La Banda, and H. Heinemann, Influence of Phosphorus in Vanadium-Containing Catalysts for NOx Removal, Appl. Catal., 55, 151-164 (1989). https://doi.org/10.1016/S0166-9834(00)82325-8
  16. H. Kamata, K. Takahashi, and C. U. Ingemar Odenbrand, Surface acid property and its relation to SCR activity of phosphorous added to commercial V2O5(WO3)/TiO2 catalyst, Catal. Lett., 53, 65-71 (1998). https://doi.org/10.1023/A:1019020931117
  17. Y. You, H. Chang, T. Zhu, T. Zhang, and X. Li, The poisoning effects of phosphorous on CeO2-MoO3/TiO2 DeNOx catalysts: NH3-SCR activity and the formation of N2O, Mol. Catal., 439, 15-24 (2017). https://doi.org/10.1016/j.mcat.2017.06.013
  18. V. Sudarsan, K. P. Muthe, J. C. Vyas, and S. K. Kulshreshtha, PO43- tetrahedra in SbPO4 and SbOPO4: a 31P NMR and XPS Study, J. Alloys Compd., 336(1-2), 119-123 (2002). https://doi.org/10.1016/S0925-8388(01)01888-6
  19. V. Mahdavi and H. R. Hasheminasab, Vanadium phosphorous oxide catalyst promoted by cobalt doping for mild oxidation of benzyl alcohol to benzaldehyde in the liquid phase, Appl. Catal. A: Gen., 482, 189-197 (2014). https://doi.org/10.1016/j.apcata.2014.06.003
  20. Z. Ma, X. Wu, Y. Feng, Z. Si, D. Weng, and L. Shi, Low-Temperature SCR activity and SO2 deactivation mechanism of Cemodified V2O5-WO3/TiO2 catalyst, Prog. Nat. Sci.: Mater., 25(4), 342-352 (2015). https://doi.org/10.1016/j.pnsc.2015.07.002
  21. S. B. Kim, G. R. Choi, J. H. Shin, and S. C. Hong, Selective Catalytic Reduction(SCR) of NOx with NH3 on Sb-promoted VWTi Catalysts, Appl. Chem. Eng., 32(1), 35-41 (2021). https://doi.org/10.14478/ACE.2020.1097
  22. X. Yin, H. Han, I. Gunji, A. Endou, S. S. C. Ammal, M. Kubo, and A. Miyamoto, NH3 Adsorption on the Bronsted and Lewis Sites of V2O5(010): A Periodic Density Functional Study, J. Phys. Chem. B, 103(22), 4701-4706 (1999). https://doi.org/10.1021/jp990363p
  23. J. Shen and C. Hess, High Surface Area VOx/TiO2/SBA-15 Model Catalysts for Ammonia SCR Prepared by Atomic Layer Deposition, Catalysts, 10(12), 1386 (2020). https://doi.org/10.3390/catal10121386
  24. S. Hwang, S. H. Jo, J. Kim, M. C. Shin, and H. H. Chun, Catalytic activity of MnOx/TiO2 catalysts synthesized with different manganese precursors for the selective reduction of nitrogen oxides, Reac. Kinet. Mech. Cat, 117, 583-591 (2016). https://doi.org/10.1007/s11144-015-0948-7
  25. Z. Ma, D. Weng, X. Wu, and Z. Si, Effects of WOx modification on the activity, adsorption and redox properties of CeO2 catalyst for NOx reduction with ammonia, J. Environ. Sci., 24(7), 1305-1316 (2012). https://doi.org/10.1016/S1001-0742(11)60925-X
  26. Y. Xu, X. Wu, Q. Lin, R. Ran, and D. Weng, SO2 promoted V2O5-MoO3/TiO2 catalyst for NH3-SCR of NOx at low temperatures, Appl. Catal. A: Gen., 570, 42-50 (2019). https://doi.org/10.1016/j.apcata.2018.10.040
  27. Z. Ma, X. Wu, H. Harelind, D. Weng, and B. Wang, NH3-SCR reaction mechanisms of NbOx/Ce0.75Zr0.25O2 catalyst: DRIFTS and kinetics studies, J. Mol. Catal. A: Chem., 423, 172-180 (2016). https://doi.org/10.1016/j.molcata.2016.06.023
  28. Q. Lin, J. Li, L. Ma, and J. Hao, Selective catalytic reduction of NO with NH3 over Mn-Fe/USY under lean burn conditions, Catal. Today, 151(3-4), 251-256 (2010). https://doi.org/10.1016/j.cattod.2010.01.026
  29. I. H. Song, H. H. Lee, S. W. Jeon, and D. H. Kim, Understanding the dynamic behavior of acid sites on TiO2-supported vanadia catalysts via operando DRIFTS under SCR-relevant conditions, J. Catal., 382, 269-279 (2020). https://doi.org/10.1016/j.jcat.2019.12.041
  30. L. J. Alemany, F. Berti, G. Busca, G. Ramis, D. Robba, G. P. Toledo, and M. Trombetta, Characterization and composition of commercial V2O5&z.sbnd&WO3&z.sbnd;TiO2 SCR catlaysts, Appl. Catal. B: Environ., 103, 5240-5245 (1999).
  31. K. Shimizu, H. Kawabata, A. Satsuma, and T. Hattori, Role of acetate and nitrates in the selective catalytic reduction of NO by propene over alumina catalyst as investigated by FTIR, J. Phys. Chem. B, 103, 5240-5245 (1999). https://doi.org/10.1021/jp984770x
  32. R. Zhang, P. Li, R. Xiao, N. Liu, and B. Chen, Insight into the mechanism of catalytic combustion of acrylonitrile over Cu-doped perovskites by an experimental and theoretical study, Appl. Catal. B: Environ., 196, 142-154 (2016). https://doi.org/10.1016/j.apcatb.2016.05.025
  33. D. A. Pena, B. S. Uphade, E. P. Reddy, and P. G. Smirniotis, Identification of Surface Species on Titania-Supported Manganese, Chromium, and Copper Oxide Low-Temperature SCR Catalysts, J. Phys. Chem. B, 104, 9927-9936 (2004).