Acknowledgement
본 논문은 육군사관학교 핵·WMD 방호연구센터 2021년도(21-센터-5) 연구활동비 지원을 받아 연구되었습니다. 본 논문 작성에 필요한 분석 기회를 제공해준 서울과학기술대학교 공동실험실습관 관계자들과 실험에 필요한 지원을 해준 이연희 님에게도 감사드립니다.
References
- J. B. DeCoste and G. W. Peterson, Metal-organic frameworks for air purification of toxic chemicals, Chem. Rev. 114, 5695-5727 (2014). https://doi.org/10.1021/cr4006473
- R. C. Gupta, Handbook of Toxicology of Chemical Warfare Agents, 2nd ed., Elsevier, Amsterdam, Netherlands (2015).
- J. P Ruffley, I. Goodenough, T. Y. Luo, M. Richard, E. Borguet, N. L. Rosi, and J. K. Johnson, Design, synthesis, and characterization of metal-organic frameworks for enhanced sorption of chemical warfare agent stimulants, J. Phys. Chem. C 123, 19748-19758 (2019). https://doi.org/10.1021/acs.jpcc.9b05574
- A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke, and P. Behrens, Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals, Chem. Eur. J. 17, 6643-6651 (2011). https://doi.org/10.1002/chem.201003211
- G. Lu, C. Cui, W. Zhang, Y. Liu, and F. Huo, Synthesis and self-assembly of monodispersed metal-organic framework microcrystals, Chem. Asian J. 8, 69-72 (2013). https://doi.org/10.1002/asia.201200754
- Z. Hasan and S. H. Jhung, Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions, J. Hazard. Mater. 283, 329-339 (2015). https://doi.org/10.1016/j.jhazmat.2014.09.046
- J. H. Cavka, S. Jakobsen, U. Olsbye, N, Guillou, C, Lamberti, S, Bordiga, and K. P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, J. Am. Chem. Soc. 130, 13850-13851 (2008). https://doi.org/10.1021/ja8057953
- A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp, and O. K. Farha, Chemical, thermal and mechanical stabilities of metal-organic frameworks, Nat. Rev. Mater. 1, 15018 (2016). https://doi.org/10.1038/natrevmats.2015.18
- T. F. Liu, N. A. Vermeulen, A. J. Howarth, P. Li, A. A. Sarjeant, J. T. Hupp, and O. K. Farha, Adding to the arsenal of zirconium-based metal-organic frameworks: the Topology as a platform for solvent-assisted metal incorporation, Eur. J. Inorg. Chem. 2016, 4349-4352 (2016). https://doi.org/10.1002/ejic.201600627
- M. J. Katz, Z. J. Brown, Y. J. Colon, P. W. Siu, K. A. Scheidt, R. Q. Snurr, J. T. Hupp, and O. K. Farha, A facile synthesis of UiO-66, UiO-67 and their derivatives, Chem. Comm. 49, 9449-9451 (2013). https://doi.org/10.1039/c3cc46105j
- J. Qiu, Y. Feng, X. Zhang, M. Jia, and J. Yao, Acid-promoted synthesis of UiO-66 for highly selective adsorption of anionic dyes: Adsorption performance and mechanisms, J. Colloid Interface Sci. 499, 151-158 (2017). https://doi.org/10.1016/j.jcis.2017.03.101
- G. Hu, W. Xiong, H. Luo, H. Shi, Z. Li, J. Shen, X. Fang, B. Xu, and J. Zhang, Raman spectroscopic detection for simulants of chemical warfare agents using a spatial heterodyne spectrometer, Appl. Spectrosc. 72, 151-158 (2018). https://doi.org/10.1177/0003702817719453
- H. Ogawa, T. Chihara, S. Teratani, and K. Taya, Infrared spectrum of terephthalic acid adsorbed on alumina surface, Bull. Tokyo Gakugei Univ. Sect IV 40, 51-55 (1988).
- A. Mott and R. Peter, Calculated infrared spectra of nerve agents and simulants, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 91, 256-260 (2012). https://doi.org/10.1016/j.saa.2012.02.010
- S. R. Ryu, I. Noda, and Y. M. Jung, What is the origin of positional fluctuation of spectral features: true frequency shift or relative intensity changes of two overlapped bands? Appl. Spectrosc. 64, 1017-1021 (2010). https://doi.org/10.1366/000370210792434396
- L. G. Wade, Organic chemistry, 8th ed., Pearson, London, UK (2012).
- R. C. Klet, Y. Liu, T. C. Wang, J. T. Hupp, and O. K. Farha, Evaluation of Bronsted acidity and proton topology in Zr-and Hf-based metal-organic frameworks using potentiometric acidbase titration, J. Mater. Chem. A 4, 1479-1485 (2016). https://doi.org/10.1039/C5TA07687K
- C. H. Lau, R. Babarao, and M. R. Hill, A route to drastic increase of CO2 uptake in Zr metal organic framework UiO-66, Chem. Comm. 49, 3634-3636 (2013). https://doi.org/10.1039/c3cc40470f
- S. I. Kim, T. U. Yoon, M. B. Kim, S. J. Lee, Y. K. Hwang, J. S. Chang, H. J. Kim, H. N. Lee, U. H. Lee, and Y. S. Bae, Metal-organic frameworks with high working capacities and cyclic hydrothermal stabilities for fresh water production, Chem. Eng. J. 286, 467-475 (2016). https://doi.org/10.1016/j.cej.2015.10.098
- C. G. Piscopo, F. Trapani, A. Polyzoidis, M. Schwarzer, A. Pace, and S. Loebbecke, Positive effect of the fluorine moiety on the oxygen storage capacity of UiO-66 metalorganic frameworks, New J. Chem. 40, 8220-8224 (2016). https://doi.org/10.1039/c6nj02169g
- X. Cheng, X. Jiang, Y. Zhang, C. H. Lau, Z. Xie, D. Ng, S. J. Smith, M. Hill, and L. Shao, Building additional passageways in polyamide membranes with hydrostable metal organic frameworks to recycle and remove organic solutes from various solvents, ACS Appl. Mater. Interfaces 9, 38877-38886 (2017). https://doi.org/10.1021/acsami.7b07373
- S. Lin, J. K. Bediako, C. Cho, M. Song, Y. Zhao, J. Kim, J. Choi, and Y. Yun, Selective adsorption of Pd(II) over interfering metal ions (Co(II), Ni(II), Pt(IV)) from acidic aqueous phase by metal-organic frameworks, Chem. Eng. J. 345, 337-344 (2018). https://doi.org/10.1016/j.cej.2018.03.173