DOI QR코드

DOI QR Code

The Characteristics of Diisopropyl Methylphosphonate Adsorption on Zirconium-based Metal Organic Frameworks Manufactured by using Different Acids as Modulators

서로 다른 산을 조절인자로 활용하여 제조한 지르코늄 기반 금속유기골격체의 Diisopropyl Methylphosphonate 흡착 특성

  • Jang, Wonhyeong (Nuclear & WMD Protection Research Center, Korea Military Academy) ;
  • Kim, Honghyun (Nuclear & WMD Protection Research Center, Korea Military Academy) ;
  • Jeong, Sangjo (Nuclear & WMD Protection Research Center, Korea Military Academy)
  • 장원형 (육군사관학교 핵.WMD방호연구센터) ;
  • 김홍현 (육군사관학교 핵.WMD방호연구센터) ;
  • 정상조 (육군사관학교 핵.WMD방호연구센터)
  • Received : 2021.07.16
  • Accepted : 2021.08.18
  • Published : 2021.10.10

Abstract

Depending on the type and amount of acid used as a modulator in the manufacturing process, the structural properties of UiO-66 can be modified and the adsorbability of chemical warfare agents can be enhanced. In this study, several acids as a modulator were used to synthesize UiO-66. Their properties were analyzed with FT-IR, XRD, titrator, and adsorption isotherms using chemical warfare agent simulant, DIMP. The UiO-66, structurally damaged by hydrochloric acid as a modulator, showed lower crystallinity and DIMP adsorption capacity and also smaller specific surface area and volume of voids compared to those of UiO-66, which was manufactured using acetic acid, and formic acid as a modulator. Additionally, UiO-66 which was synthesized by adding formic acid and hydrochloric acid as a modulator, showed the highest DIMP adsorption capacity and is likely to be used as an adsorbent for chemical warfare agent in the future.

UiO-66은 높은 흡착능력과 구조적 및 열적 안정성 등으로 여러 현장에 적용 가능한 금속유기골격체(MOF)이다. UiO-66은 제조과정에서 조절인자로 사용되는 산의 종류와 양에 따라 구조적 특성이 변형되고, 화학작용제 흡착 능력을 높일 수 있다고 알려져 있다. 이에 본 연구에서는 다양한 산을 조절인자로 첨가하여 UiO-66을 합성하고, 그 특성을 FT-IR, XRD, 적정장치, 그리고 유사화학작용제 diisopropyl methylphosphonate (DIMP)를 활용한 흡착실험을 통해 분석하였다. 연구 결과 UiO-66의 제조과정에서 염산을 첨가할 시 UiO-66의 Zr-OH 결합과 UiO-66의 유기연결체인 테레프 탈산 구조에 일부 손상이 있었다. 특히 이러한 구조 손상은 염산의 농도가 일정 수준 이상으로 높을 때, 그리고 합성 시간이 일정 시간 이상으로 길어질 때 발생하였다. 하지만 아세트산과 포름산을 조절인자로 활용하여 제조한 UiO-66은 구조적 손상이 발견되지 않았으며, 염산을 활용하여 제조한 UiO-66에 비하여 결정도, 비표면적, 공극의 부피, 그리고 DIMP 흡착 능력이 모두 높게 나타나 향후 화학작용제 흡착제로서 활용 가능성이 높을 것으로 판단되었다.

Keywords

Acknowledgement

본 논문은 육군사관학교 핵·WMD 방호연구센터 2021년도(21-센터-5) 연구활동비 지원을 받아 연구되었습니다. 본 논문 작성에 필요한 분석 기회를 제공해준 서울과학기술대학교 공동실험실습관 관계자들과 실험에 필요한 지원을 해준 이연희 님에게도 감사드립니다.

References

  1. J. B. DeCoste and G. W. Peterson, Metal-organic frameworks for air purification of toxic chemicals, Chem. Rev. 114, 5695-5727 (2014). https://doi.org/10.1021/cr4006473
  2. R. C. Gupta, Handbook of Toxicology of Chemical Warfare Agents, 2nd ed., Elsevier, Amsterdam, Netherlands (2015).
  3. J. P Ruffley, I. Goodenough, T. Y. Luo, M. Richard, E. Borguet, N. L. Rosi, and J. K. Johnson, Design, synthesis, and characterization of metal-organic frameworks for enhanced sorption of chemical warfare agent stimulants, J. Phys. Chem. C 123, 19748-19758 (2019). https://doi.org/10.1021/acs.jpcc.9b05574
  4. A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke, and P. Behrens, Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals, Chem. Eur. J. 17, 6643-6651 (2011). https://doi.org/10.1002/chem.201003211
  5. G. Lu, C. Cui, W. Zhang, Y. Liu, and F. Huo, Synthesis and self-assembly of monodispersed metal-organic framework microcrystals, Chem. Asian J. 8, 69-72 (2013). https://doi.org/10.1002/asia.201200754
  6. Z. Hasan and S. H. Jhung, Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions, J. Hazard. Mater. 283, 329-339 (2015). https://doi.org/10.1016/j.jhazmat.2014.09.046
  7. J. H. Cavka, S. Jakobsen, U. Olsbye, N, Guillou, C, Lamberti, S, Bordiga, and K. P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, J. Am. Chem. Soc. 130, 13850-13851 (2008). https://doi.org/10.1021/ja8057953
  8. A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp, and O. K. Farha, Chemical, thermal and mechanical stabilities of metal-organic frameworks, Nat. Rev. Mater. 1, 15018 (2016). https://doi.org/10.1038/natrevmats.2015.18
  9. T. F. Liu, N. A. Vermeulen, A. J. Howarth, P. Li, A. A. Sarjeant, J. T. Hupp, and O. K. Farha, Adding to the arsenal of zirconium-based metal-organic frameworks: the Topology as a platform for solvent-assisted metal incorporation, Eur. J. Inorg. Chem. 2016, 4349-4352 (2016). https://doi.org/10.1002/ejic.201600627
  10. M. J. Katz, Z. J. Brown, Y. J. Colon, P. W. Siu, K. A. Scheidt, R. Q. Snurr, J. T. Hupp, and O. K. Farha, A facile synthesis of UiO-66, UiO-67 and their derivatives, Chem. Comm. 49, 9449-9451 (2013). https://doi.org/10.1039/c3cc46105j
  11. J. Qiu, Y. Feng, X. Zhang, M. Jia, and J. Yao, Acid-promoted synthesis of UiO-66 for highly selective adsorption of anionic dyes: Adsorption performance and mechanisms, J. Colloid Interface Sci. 499, 151-158 (2017). https://doi.org/10.1016/j.jcis.2017.03.101
  12. G. Hu, W. Xiong, H. Luo, H. Shi, Z. Li, J. Shen, X. Fang, B. Xu, and J. Zhang, Raman spectroscopic detection for simulants of chemical warfare agents using a spatial heterodyne spectrometer, Appl. Spectrosc. 72, 151-158 (2018). https://doi.org/10.1177/0003702817719453
  13. H. Ogawa, T. Chihara, S. Teratani, and K. Taya, Infrared spectrum of terephthalic acid adsorbed on alumina surface, Bull. Tokyo Gakugei Univ. Sect IV 40, 51-55 (1988).
  14. A. Mott and R. Peter, Calculated infrared spectra of nerve agents and simulants, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 91, 256-260 (2012). https://doi.org/10.1016/j.saa.2012.02.010
  15. S. R. Ryu, I. Noda, and Y. M. Jung, What is the origin of positional fluctuation of spectral features: true frequency shift or relative intensity changes of two overlapped bands? Appl. Spectrosc. 64, 1017-1021 (2010). https://doi.org/10.1366/000370210792434396
  16. L. G. Wade, Organic chemistry, 8th ed., Pearson, London, UK (2012).
  17. R. C. Klet, Y. Liu, T. C. Wang, J. T. Hupp, and O. K. Farha, Evaluation of Bronsted acidity and proton topology in Zr-and Hf-based metal-organic frameworks using potentiometric acidbase titration, J. Mater. Chem. A 4, 1479-1485 (2016). https://doi.org/10.1039/C5TA07687K
  18. C. H. Lau, R. Babarao, and M. R. Hill, A route to drastic increase of CO2 uptake in Zr metal organic framework UiO-66, Chem. Comm. 49, 3634-3636 (2013). https://doi.org/10.1039/c3cc40470f
  19. S. I. Kim, T. U. Yoon, M. B. Kim, S. J. Lee, Y. K. Hwang, J. S. Chang, H. J. Kim, H. N. Lee, U. H. Lee, and Y. S. Bae, Metal-organic frameworks with high working capacities and cyclic hydrothermal stabilities for fresh water production, Chem. Eng. J. 286, 467-475 (2016). https://doi.org/10.1016/j.cej.2015.10.098
  20. C. G. Piscopo, F. Trapani, A. Polyzoidis, M. Schwarzer, A. Pace, and S. Loebbecke, Positive effect of the fluorine moiety on the oxygen storage capacity of UiO-66 metalorganic frameworks, New J. Chem. 40, 8220-8224 (2016). https://doi.org/10.1039/c6nj02169g
  21. X. Cheng, X. Jiang, Y. Zhang, C. H. Lau, Z. Xie, D. Ng, S. J. Smith, M. Hill, and L. Shao, Building additional passageways in polyamide membranes with hydrostable metal organic frameworks to recycle and remove organic solutes from various solvents, ACS Appl. Mater. Interfaces 9, 38877-38886 (2017). https://doi.org/10.1021/acsami.7b07373
  22. S. Lin, J. K. Bediako, C. Cho, M. Song, Y. Zhao, J. Kim, J. Choi, and Y. Yun, Selective adsorption of Pd(II) over interfering metal ions (Co(II), Ni(II), Pt(IV)) from acidic aqueous phase by metal-organic frameworks, Chem. Eng. J. 345, 337-344 (2018). https://doi.org/10.1016/j.cej.2018.03.173