DOI QR코드

DOI QR Code

A Study on the Coating Method of Platinum based Catalyst for Odor Gas and VOCs Oxidation

악취가스 및 휘발성 유기 화합물 산화를 위한 백금계 촉매의 코팅 방법에 관한 연구

  • Shin, Jung Hun (Department of Environmental Energy Engineering, Graduate school of Kyonggi University) ;
  • Jung, Min Gie (Department of Environmental Energy Engineering, Graduate school of Kyonggi University) ;
  • Hong, Sung Chang (Department of Environmental Energy Engineering, Kyonggi University)
  • 신중훈 (경기대학교 일반대학원 환경에너지공학과) ;
  • 정민기 (경기대학교 일반대학원 환경에너지공학과) ;
  • 홍성창 (경기대학교 환경에너지공학과)
  • Received : 2021.07.27
  • Accepted : 2021.08.06
  • Published : 2021.10.10

Abstract

In this study, different methods to coat honeycomb and metal foam substrate with platinum/titania for removing odor gases and volatile organic compounds were investigated. Among them, the powder coating and the nano coating were compared. Scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX) analysis was used to investigate the surface conditions and exposed platinum composition ratios on honeycomb and metal foam. Also, the catalytic oxidation performance of toluene, trimethylamine and isopropyl alcohol was compared according to the coating method.

본 연구에서는 악취가스 및 휘발성 유기 화합물을 산화 제거하기 위한 백금/티타니아를 허니컴 및 메탈폼 담체에 코팅하는 방법을 확인하였다. 다양한 방법 중 파우더 코팅과 나노 코팅에 대한 비교를 수행하였다. SEM/EDX (Scanning Electron Microscopy/Energy Dispersive X-ray spectroscopy) 분석은 허니컴 및 메탈폼의 표면 상태 및 노출된 백금 성분비를 조사하는데 사용되었다. 또한, 촉매 코팅 방법에 따른 톨루엔, 트리메틸아민, 아이소프로필 알코올의 제거 성능을 비교하였다.

Keywords

Acknowledgement

본 연구는 2021학년도 경기대학교 대학원 연구원장학생 장학금 지원에 의하여 수행되었음.

References

  1. M. Govindan and I. S. Moon, A single catalyst of aqueous CoIII for deodorization of mixture odor gases: A development and reaction pathway study at electro-scrubbing process, J. Hazard. Mater., 260, 1064-1072 (2013). https://doi.org/10.1016/j.jhazmat.2013.06.055
  2. Y. Han, Y. Wang, F. Chai, J. Ma, and L. Li, Biofilters for the co-treatment of volatile organic compounds and odors in a domestic waste landfill site, J. Clean Prod., 277, 124012 (2020). https://doi.org/10.1016/j.jclepro.2020.124012
  3. D. Kasperczyk, K. Urbaniec, K. Barbusinski, E. R. Rene, and R. F. Colmenares-Quintero, Application of a compact trickle-bed bioreactor for the removal of odor and volatile organic comounds emitted from a wastewater treatment plant, J. Environ. Manage., 236, 413-419 (2019). https://doi.org/10.1016/j.jenvman.2019.01.106
  4. D. Dobslaw, O. Ortlinghaus, and C. Dobslaw, A combined process of non-thermal plasma and a low-cost mineral adsorber for VOC removal and odor abatement in emissions of organic waste treatment plants, J. Environ. Chem. Eng., 6, 2281-2289 (2018). https://doi.org/10.1016/j.jece.2018.03.012
  5. R. Auria, A. C. Aycaguer, and J. S. Devinny, Influence of Water content on degradation rates for ethanol in biofiltration, J. Air Wast Manage. Assoc., 48, 65-70 (2011).
  6. M. Tomatis, M. T. Moreira, H. Xu, W. Deng, J. He, and A. M. Parvez, Removal of VOCs from waste gases using various thermal oxidizers: A comparative study based on life cycle assessment and cost analysis in china, J. Clean Prod., 233, 808-818 (2019). https://doi.org/10.1016/j.jclepro.2019.06.131
  7. Z. Zhang, Z. Jiang, and W. Shangguan, Low-temperature catalysis for VOCs removal in technology and application: A state-of-the-art review, Catal. Today, 264, 270-278 (2016). https://doi.org/10.1016/j.cattod.2015.10.040
  8. J. Yang, Y. Chen, L. Cao, Y. Guo, and J. Jia, Development and Field-scale optimization of a honeycomb zeolite rotor concentrator/recuperative oxidizer for the abatement of volatile organic carbons from semiconductor industry, Environ. Sci. Technol., 46, 441-446 (2012). https://doi.org/10.1021/es203174y
  9. F. Barari, E. M. E. Luna, R. Goodall, and R. Woolley, Metal foam regenerators; heat transfer and storage in porous metals, J. Mater. Res., 28, 2474-2482 (2013). https://doi.org/10.1557/jmr.2013.156
  10. M. Yu, F. Xin, X. Lai, H. Xiao, Z. Liu, and W. Liu, Study of oscillating flows through a novel constructal bifurcation stirling regenerator, Appl. Therm. Eng., 184, 116413, (2021). https://doi.org/10.1016/j.applthermaleng.2020.116413