Acknowledgement
The authors are grateful the Algerian institutions and their scientific staff, in particular Centre for Earthquakes Engineering Studies (CGS, Algeria) who offered access to the whole database.
References
- Akkouche, K., Hannachi, N.E., Hamizi, M., Khelil, N., Djouzi, K. and Daoui, M. (2019), "Knowledge-based system for damage assessment after earthquake: Algerian buildings case", Asian J. Civil Eng., 20(6), 769-784. https://doi.org/10.1007/s42107-019-00143-z.
- Allali, S. A., Abed, M. and Mebarki, A. (2018), "Post-earthquake assessment of buildings damage using fuzzy logic", Eng. Struct., 166, 117-127. https://doi.org/10.1016/j.engstruct.2018.03.055.
- Anderson, C.V. (2002), The Federal Emergency Management Agency (FEMA), Nova Science Publishers, Hauppauge, U.S.A.
- Anilkumar, S. and Banerji, H. (2021), "An inquiry into success factors for post-disaster housing reconstruction projects: A case of Kerala, South India", Int. J. Dis. Risk Sci., 12(1), 24-39. https://doi.org/10.1007/s13753-020-00309-3.
- Belazougui, M. (2008), "Boumerdes Algeria Earthquake of May 21, 2003: Damage analysis and behavior of beam-column reinforced concrete structures", Proceedings of the 14 World Conference on Earthquake Engineering, Beijing, China, October.
- Bernal, G.A., Salgado-Galvez, M.A., Zuloaga, D., Tristancho, J., Gonzalez, D. and Cardona, O.D. (2017), "Integration of probabilistic and multi-hazard risk assessment within urban development planning and emergency preparedness and response: application to Manizales, Colombia", Int. J. Dis. Risk Sci., 8(3), 270-283. https://doi.org/10.1007/s13753-017-0135-8.
- Boughaba, A. and Bouabaz, M. (2020), "Identification and risk management related to construction projects", Advan. Comput. Des., 5(4), 445-465. https://doi.org/10.12989/ACD.2020.5.4.445.
- Boukri, M., Farsi, M.N., Mebarki, A., Belazougui, M., Amellal, O., Mezazigh, B. and Benhamouche, A. (2014), "Seismic risk and damage prediction: case of the buildings in Constantine city (Algeria)", Bull. Earthq. Eng., 12(6), 2683-2704. https://doi.org/10.1007/s10518-014-9594-0.
- Cicek, K. and Sar, A. (2020), "A novel risk assessment approach for data center structures", Earthq. Struct., 19(6), 471. http://dx.doi.org/10.12989/eas.2020.19.6.471.
- Derbal, I., Bourahla, N., Mebarki, A. and Bahar, R. (2020), "Neural network-based prediction of ground time history responses", Europe. J. Environ. Civil Eng., 24(1), 123-140. https://doi.org/10.1080/19648189.2017.1367727.
- Fan, Y., Wen, Q., Wang, W., Wang, P., Li, L. and Zhang, P. (2017), "Quantifying disaster physical damage using remote sensing data-A technical work flow and case study of the 2014 Ludian earthquake in China", Int. J. Dis. Risk Sci., 8(4), 471-488. https://doi.org/10.1007/s13753-017-0143-8.
- Foti, D., Giannoccaro, N.I., Greco, P., Lerna, M., Paolicelli, R. and Vacca, V. (2020), "Evaluation of structural operativity of two strategic buildings through Seismic Model", Earthq. Struct., 19(1), 45-57. https://doi.org/10.12989/EAS.2020.19.1.45.
- Ge, Y., Gu, Y. and Deng, W. (2010), "Evaluating china's national post-disaster plans: The 2008 Wenchuan Earthquake's recovery and reconstruction planning", Int. J. Dis. Risk Sci., 1(2), 17-27. https://doi.org/10.3974/j.issn.2095-0055.2010.02.003.
- Ghahremani, B., Bitaraf, M., Ghorbani-Tanha, A.K. and Fallahi, R. (2021), "Structural damage identification based on fast S-transform and convolutional neural networks", Struct., 29, 1199-1209. https://doi.org/10.1016/j.istruc.2020.11.068.
- Gunthal, G., Musson, R.M.W., Schwarz, J. and Stucchi, M. (1993), "The European microseismic scale (MSK-92)", Terra Nova, 5(3), 305-305. https://doi.org/10.1111/j.1365-3121.1993.tb00261.x.
- Harirchian, E. and Lahmer, T. (2020), "Developing a hierarchical type-2 fuzzy logic model to improve rapid evaluation of earthquake hazard safety of existing buildings", Struct., 28, 1384-1399. https://doi.org/10.1016/j.istruc.2020.09.048.
- Jordan, M. (1995), Why the Logic Function? A Tutorial Discussion on Probabilities and Neural Networks, Technical Report 9503, Computational Cognitive Science, Massachusetts Institute of Technology, Massachusetts, Cambridge.
- Kang, H.S. and Kim, Y.T. (2016), "The physical vulnerability of different types of building structure to debris flow events", Nat. Haz., 80(3), 1475-1493. https://doi.org/10.1007/s11069-015-2032-z.
- Kaveh, A. and Maniat, M. (2014), "Damage detection in skeletal structures based on charged system search optimization using incomplete modal data", IJCE, 12(2), 193-200. http://ijce.iust.ac.ir/article-1-980-en.html.
- Kaya, Z. (2016), "Predicting liquefaction-induced lateral spreading by using neural network and neuro-fuzzy techniques", Int. J. Geomech., 16(4), 04015095. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000607.
- Li, M., Hong, M. and Zhang, R. (2018), "Improved Bayesian network-based risk model and its application in disaster risk assessment", Int. J. Dis. Risk Sci., 9(2), 237-248. https://doi.org/10.1007/s13753-018-0171-z.
- Marino, S., Cattari, S., Lagomarsino, S., Dizhur, D. and Ingham, J. M. (2019), "Post-earthquake damage simulation of two colonial unreinforced clay brick masonry buildings using the equivalent frame approach", Struct., 19, 212-226. https://doi.org/10.1016/j.istruc.2019.01.010.
- Marquardt, D.W. (1963), "An algorithm for least-squares estimation of nonlinear parameters", J. Soc. Ind. Appl. Mathem., 11(2), 431-441. http://www.jstor.org/stable/2098941. https://doi.org/10.1137/0111030
- McCulloch, W.S. and Pitts, W. (1943), "A logical calculus of the ideas immanent in nervous activity", Bull. Mathem. Biophy., 5(4), 115-133. https://doi.org/10.1007/BF02478259.
- Mebarki, A., Boukri, M., Laribi, A., Farsi, M., Belazougui, M. and Kharchi, F. (2014), "Seismic vulnerability: theory and application to Algerian buildings", J. Seismol., 18(2), 331-343. https://doi.org/10.1007/s10950-013-9377-0.
- Mehrotra, A., Singh, K.K., Nigam, M.J. and Pal, K. (2015), "Detection of tsunami-induced changes using generalized improved fuzzy radial basis function neural network", Nat. Haz., 77(1), 367-381. https://doi.org/10.1007/s11069-015-1595-z.
- Mitrani-Resier, J., Wu, S. and Beck, J.L. (2016), "Virtual inspector and its application to immediate pre-event and post-event earthquake loss and safety assessment of buildings", Nat. Haz., 81(3), 1861-1878. https://doi.org/10.1007/s11069-016-2159-6.
- More, J. (1978), "The Levenberg-Marquardt algorithm: Implementation and theory", Energy Res. Develop. Admin., 630, 105-116. https://doi.org/10.1007/BFb0067700.
- Noura, H., Mebarki, A., and Abed, M. (2019), "Post-earthquake structural damage evaluation by neural networks: theory and calibration", Europe. J. Environ. Civil Eng., 23(6), 710-727. https://doi.org/10.1080/19648189.2017.1304277.
- Rafi, M.M., Lodi, S.H., Ahmed, M. and Alam, N. (2015), "Observed damages in Pakistan due to 16 April 2013 Iran earthquake", Bull. Earthq. Eng., 13(2), 703-724. https://doi.org/10.1007/s10518-014-9638-5.
- Reyes, J., and Cardenas, V. H. (2010), "A Chilean seismic regionalization through a Kohonen neural network", Neural Computing and Applications, 19(7), 1081-1087. https://doi.org/10.1007/s00521-010-0373-9.
- Riedel, I., Gueguen, P., Dalla Mura, M., Pathier, E., Leduc, T. and Chanussot, J. (2015), "Seismic vulnerability assessment of urban environments in moderate-to-low seismic hazard regions using association rule learning and support vector machine methods", Nat. Haz., 76(2), 1111-1141. https://doi.org/10.1007/s11069-014-1538-0.
- Shao, Y.W., Wu, Y.S., Kao, S.F., Huang, C.J. and Chang, K.Y. (2014), "Application of fuzzy theory on earthquake damage rate estimation of buildings", J. Central South Univ., 21(6), 2454-2459. https://doi.org/10.1007/s11771-014-2199-6.
- Swingler, K. (1996), Applying Neural Networks: A Practical Guide, Morgan Kaufmann, Academic Press, London, U.K.
- Wong, H.T. and Li, S. (2016), "Healthcare services demand in post-disaster settings: The 2014 earthquake in Ludian County, Yunnan Province, China", Int. J. Dis. Risk Sci., 7(4), 445-449. https://doi.org/10.1007/s13753-016-0107-4.
- Xue, X. and Yang, X. (2013), "Application of the adaptive neuro-fuzzy inference system for prediction of soil liquefaction", Nat. Haz., 67(2), 901-917. https://doi.org/10.1007/s11069-013-0615-0.
- Yamazaki, F. and Matsuoka, M. (2007), "Remote sensing technologies in post-disaster damage assessment", J. Earthq. Tsunami, 1(03), 193-210. https://doi.org/10.1142/S1793431107000122.
- Yazdanian, M., Ingham, J., Kahanek, C. and Dizhur, D. (2020), "Damage assessment of catwalks following the 2016 Kaikoura earthquake", Struct., 28, 1977-1990. https://doi.org/10.1016/j.istruc.2020.10.041.
- Zhan, Y., Lu, S., Xiang, T. and Wei, T. (2021), "Application of convolutional neural network in random structural damage identification", Struct., 29, 570-576. https://doi.org/10.1016/j.istruc.2020.11.056.
- Zheng, J., Wang, Y., Zhang, K. and Liang, J. (2020), "A dynamic emergency decision-making method based on group decision making with uncertainty information", Int. J. Dis. Risk Sci., 11(5), 667-679. https://doi.org/10.1007/s13753-020-00308-4.