Acknowledgement
본 연구는 과학기술정보통신부 및 정보통신기획평가원의 지역지능화혁신인재양성(Grand ICT연구센터) 사업의 연구결과로 수행되었음(IITP-2021-2020-0-01791). 박태인 학부생의 도움에 감사드립니다.
References
- C.-W. Chan, H.-C. Man, and T.-M. Yue, Effect of post-weld-annealing on the tensile deformation characteristics of laser-welded NiTi thin foil, Metals and Materials International, 18, 691 (2012). Doi: https://doi.org/10.1007/s12540-012-4019-6
- S. Sadeghpour, S. Abbasi, and M. Morakabati, Deformation-induced martensitic transformation in a new metastable β titanium alloy, Journal of Alloys and Compounds, 650, 22 (2015). Doi: https://doi.org/10.1016/j.jallcom.2015.07.263
- M. Tahara, N. Okano, T. Inamura, and H. Hosoda, Plastic deformation behaviour of single-crystalline martensite of Ti-Nb shape memory alloy, Scientific reports, 7, 1 (2017). Doi: https://doi.org/10.1038/s41598-017-15877-6
- Y.-T. Sul, The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant, Biomaterials, 24, 3893 (2003). Doi: https://doi.org/10.1016/S0142-9612(03)00261-8
- S. Moon, Anodic Oxidation Treatment Methods of Metals, Journal of the Korean institute of surface engineering, 51, 1 (2018). Doi: https://doi.org/10.5695/JKISE.2018.51.1.1
- Y.-T. Sul, C. B. Johansson, S. Petronis, A. Krozer, Y. Jeong, A. Wennerberg, and T. Albrektsson, Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition, Biomaterials, 23, 491 (2002). Doi: https://doi.org/10.1016/S0142-9612(01)00131-4
- E. Byon, S. Moon, S.-B. Cho, C.-Y. Jeong, Y. Jeong, and Y.-T. Sul, Electrochemical property and apatite formation of metal ion implanted titanium for medical implants, Surface and Coatings Technology, 200, 1018 (2005). Doi: https://doi.org/10.1016/j.surfcoat.2005.02.133
- C. Jeong and C.-H. Choi, Three-Dimensional (3D) Anodic Aluminum Surfaces by Modulating Electrochemical Method, Journal of the Korean institute of surface engineering, 50, 427 (2017). Doi: https://doi.org/10.5695/JKISE.2017.50.6.427
- H. Ji and C. Jeong, Study on Corrosion and Oxide Growth Behavior of Anodized Aluminum 5052 Alloy, Journal of the Korean institute of surface engineering, 51, 372 (2018). Doi: https://doi.org/10.5695/JKISE.2018.51.6.372
- J. Jeong, F. Laiwalla, J. Lee, R. Ritasalo, M. Pudas, L. Larson, V. Leung, and A. Nurmikko, Conformal Hermetic Sealing of Wireless Microelectronic Implantable Chiplets by Multilayered Atomic Layer Deposition (ALD), Advanced Functional Materials, 29, 1806440 (2019). Doi: https://doi.org/10.1002/adfm.201806440
- C. Jeong and C.-H. Choi, Single-Step Direct Fabrication of Pillar-on-Pore Hybrid Nanostructures in Anodizing Aluminum for Superior Superhydrophobic Efficiency, ACS applied materials & interfaces, 4, 842 (2012). Doi: https://doi.org/10.1021/am201514n
- S. Moon, C. Yang, and S. Na, Formation Behavior of Anodic Oxide Films on Al7075 Alloy in Sulfuric Acid Solution, Journal of the Korean institute of surface engineering, 47, 155 (2014). Doi: https://doi.org/10.5695/JKISE.2014.47.4.155
- Y. Park, H. Ji, and C. Jeong, Effect of Shielding Gases on the Wire Arc Additive Manufacturability of 5 Cr-4 Mo Tool Steel for Die Casting Mold Making, Korean Journal of Metals and Materials, 58, 97 (2020). Doi: https://doi.org/10.3365/KJMM.2020.58.12.852
- P. Perillo and D. Rodriguez, The gas sensing properties at room temperature of TiO2 nanotubes by anodization, Sensors and Actuators B: Chemical, 171, 639 (2012). Doi: https://doi.org/10.1016/j.snb.2012.05.047
- B. O'regan and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, nature, 353, 737 (1991). Doi: https://doi.org/10.1038/353737a0
- H. Yoo, G. Lee, and J. Choi, Binder-free SnO2-TiO2 composite anode with high durability for lithium-ion batteries, RSC advances, 9, 6589 (2019). Doi: https://doi.org/10.1039/C8RA10358E
- R. Bhaskar and M. Ola, Dispersion Process: Role In The Formulation Of Particulate Disperse System Of Poorly Soluble Drugs, Journal of Drug Delivery and Therapeutics, 3 (2013). Doi: https://doi.org/10.22270/jddt.v3i1.370
- Y. Chen, Y. Zhang, L. Shi, J. Li, Y. Xin, T. Yang, and Z. Guo, Transparent superhydrophobic/superhydrophilic coatings for self-cleaning and anti-fogging, Applied Physics Letters, 101, 033701 (2012). Doi: https://doi.org/10.1063/1.4737167.
- B. Cortese, S. D'Amone, M. Manca, I. Viola, R. Cingolani, and G. Gigli, Superhydrophobicity Due to the Hierarchical Scale Roughness of PDMS Surfaces, Langmuir, 24, 2712 (2008). Doi: https://doi.org/10.1021/la702764x
- Z. Wang, Q. Li, Z. She, F. Chen, and L. Li, Low-cost and large-scale fabrication method for an environmentally-friendly superhydrophobic coating on magnesium alloy, Journal of Materials Chemistry, 22, 4097 (2012). Doi: https://doi.org/10.1039/C2JM14475A
- L. B. Boinovich, A. M. Emelyanenko, A. D. Modestov, A. G. Domantovsky, and K. A. Emelyanenko, Synergistic Effect of Superhydrophobicity and Oxidized Layers on Corrosion Resistance of Aluminum Alloy Surface Textured by Nanosecond Laser Treatment, ACS applied materials & interfaces, 7, 19500 (2015). Doi: https://doi.org/10.1021/acsami.5b06217
- Q. F. Xu, J. N. Wang, and K. D. Sanderson, A general approach for superhydrophobic coating with strong adhesion strength, Journal of Materials Chemistry, 20, 5961 (2010). Doi: https://doi.org/10.1039/C0JM00001A
- C. Jeong, J. Lee, K. Sheppard, and C.-H. Choi, Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum, Langmuir, 31, 11040 (2015). Doi: https://doi.org/10.1021/acs.langmuir.5b02392
- S. Kim, J. Kim, S. Hong, H. Kim, K. Yoon, and J. Kang, A Study on the Fabrication of Nano Pattern using a Nickel Stamper Replicated from Anodic Aluminum Oxide, Transactions of Materials Processing, 20, 23 (2011). Doi: https://doi.org/10.5228/KSTP.2011.20.1.23
- C. Jeong, Nano-Engineering of superhydrophobic aluminum surfaces for anti-corrosion, Doi: https://ui.adsabs.harvard.edu/abs/2013PhDT........45J/abstract (2013).
- S.-H. Kim and C. Jeong, Feasibility of Machine Learning Algorithms for Predicting the Deformation of Anodic Titanium Films by Modulating Anodization Processes, Materials, 14, 1089 (2021). Doi: https://doi.org/10.3390/ma14051089
- Y. Park and C. Jeong, Study on a Superhydrophobic Stainless Steel (SUS 304) Surface to Enhance Corrosion Resistance, Korean Journal of Metals and Materials, 59, 217 (2021). Doi: http://dx.doi.org/10.3365/KJMM.2021.59.4.217
- C. Jeong and H. Ji, Systematic Control of Anodic Aluminum Oxide Nanostructures for Enhancing the Superhydrophobicity of 5052 Aluminum Alloy, Materials, 12, 3231 (2019). Doi: https://doi.org/10.3390/ma12193231
- H. Ji and C. Jeong, Fabrication of Superhydrophobic Aluminum Alloy Surface with Hierarchical Pore Nanostructure for Anti-Corrosion, Corrosion Science and Technology, 18, 228 (2019). Doi: https://doi.org/10.14773/cst.2019.18.6.228
- H. Ma, C. Yang, S. Chen, Y. Jiao, S. Huang, D. Li, and J. Luo, Electrochemical investigation of dynamic interfacial processes at 1-octadecanethiol-modified copper electrodes in halide-containing solutions, Electrochimica acta, 48, 4277 (2003). Doi: https://doi.org/10.1016/j.electacta.2003.08.003
- J. Choi, J. K. Lee, J. H. Lim, and S. J. Kim, Technology Trends in Fabrication of Nanostructures of Metal Oxides by Anodization and Their Applications, Applied Chemistry for Engineering, 19, 249 (2008).
- C. Jeong and C.-H. Choi, Nano-engineered superhydrophobic anti-corrosive aluminum surfaces, Google Patents, (2014).
- Y. Park, J. Yu, S. Sim, C. Jeong, Correlation of Surface Oxide Film Growth with Corrosion Resistance of Stainless Steel, Corrosion Science and Technology, 18, 1 (2021). Doi: https://doi.org/10.14773/cst.2021.20.3.152