Acknowledgement
이 성과는 2020년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받 아 수행된 연구임(No. NRF-2020R1C1C1007302).
References
- H. W. Heinrich, "Industrial Accident Prevention: A Scientific Approach", McGraw-Hill, 1931.
- KOSHA, "Statistical Survey and Analysis of Industrial Disasters", 2019.
- S. Kang and Y. Suh, "On the Development of Risk Factor Map for Accident Analysis using Textmining and SelfOrganizing Map(SOM) Algorithms", J. Korean Soc. Saf., Vol. 33, No. 6, pp. 77-84, 2018. https://doi.org/10.14346/JKOSOS.2018.33.6.77
- G. Ahn, M. Seo and S. Hur, "Development of Accident Classification Model and Ontology for Effective Industrial Accident Analysis based on Textmining", Journal of The Korean Society of Safety, Vol. 32, No. 5, pp. 179-185, 2017. https://doi.org/10.14346/JKOSOS.2017.32.5.179
- Y. M. Goh and C. U. Ubeynarayana, "Construction Accident Narrative Classification: An Evaluation of Text Mining Techniques", Accident Analysis and Prevention, Vol. 108, pp. 122-130, 2017. https://doi.org/10.1016/j.aap.2017.08.026
- G. Salton and M. McGill, "Introduction to Modern Information Retrieval", McGraw-Hill, NY, 1983.
- S. Wold, K. Esbensen and P. Geladi, "Principal Component Analysis", Chemometrics and Intelligent Laboratory Systems, Vol. 2, No. 1-3, pp. 37-52, 1987. https://doi.org/10.1016/0169-7439(87)80084-9
- MOEL, "Classification of Causes of Deaths in Industrial Accidents", 2017.
- B. Kim, S. Chang and Y. Suh, "Text Analytics for Classifying Types of Accident Occurrence Using Accident Report Documents", J. Korean Soc. Saf., Vol. 33, No. 3, pp. 58-64, 2018. https://doi.org/10.14346/JKOSOS.2018.33.3.58
- J. Jeong, M. Jee, M. Go, H. Kim, H. Lim, Y. Lee, and W. Kim, "Related Documents Classification System by Similarity between Documents", Journal of Broadcast Engineering, Vol. 24, No. 1, pp. 77-86, 2019. https://doi.org/10.5909/JBE.2019.24.1.77
- D. Pak, M. Hwang, M. Lee, S. Woo, S. Hahn, Y. J. Lee, and J. Hwang, "Application of Text-Classification Based Machine Learning in Predicting Psychiatric Diagnosis", Korean Journal of Biological Psychiatry, Vol. 27, No. 1, pp. 18-26, 2020.
- W. Lee, "A deep learning analysis of the KOSPI's directions", Journal of the Korean Data and Information Science Society, Vol. 28, No. 2, pp. 287-295, 2017. https://doi.org/10.7465/jkdi.2017.28.2.287
- R. Kostoff, D. Toothman, H. Eberhart, and J. Jumenik, "Textmining Using Database Tomography and Bibliometrics: A Review", Technological Forecasting and Social Change, Vol. 68, No. 3, pp. 223-252, 2001. https://doi.org/10.1016/S0040-1625(01)00133-0
- M. Leblanc and R. Tibshirani, "Combining Estimates in Regression and Classification", Journal of the American Statistical Association, Vol. 91, No. 436, pp. 1641-1650, 1994. https://doi.org/10.2307/2291591
- S. Dreiseitl and L. Ohno-Machado, "Logistic Regression and Artificial Neural Network Classification Models", Journal of Biomedical Informatics, Vol. 35, pp. 352-359, 2002. https://doi.org/10.1016/S1532-0464(03)00034-0
- Y. Song and Y. LU, "Decision Tree Methods: Applications for Classification and Prediction", Shanghai Arch Psychiatry, Vol. 25, No. 2, pp. 130-135, 2015.
- R. Feraud and F Clerot, "A Methodology to Explain Neural Network Classification", Neural Networks, Vol. 15, No. 2, pp. 237-246, 2002. https://doi.org/10.1016/S0893-6080(01)00127-7
- J. P. Bigus, "Data Mining with Neural Networks", Macgraw-Hill, pp. 61-97, 1996.
- A. Mathur and G. M. Foody, "Multiclass and Binary SVM Classification: Implications for Training and Classification Users", IEEE Geoscience and Remote sensing Letters, Vol. 5, No. 2, pp. 241-245, 2008. https://doi.org/10.1109/LGRS.2008.915597
- J. Han, J. Pei and M. Kamber, "Data Mining: Concepts and Techniques", Elsevier, 2011.