DOI QR코드

DOI QR Code

Analysis of Powder Packing for Alumina Using Design of Experiment with Mixture and Vibration

혼합물실험계획법과 가진을 이용한 알루미나 파우더의 충진율 분석

  • Jeon, Sangjun (Department of Future Convergence Engineering, Kongju National University) ;
  • Kim, Youngshin (Industrial Technology Research Institute, Kongju National University) ;
  • Yang, Daejong (Department of Future Convergence Engineering, Kongju National University)
  • Received : 2021.10.21
  • Accepted : 2021.10.30
  • Published : 2021.11.05

Abstract

Alumina powder is one of the widely used materials for industry, but there is a problem that the strength of the product changes depending on the powder packing state. To solve the above problem, previous studies have been conducted to increase the particle packing efficiency, but most of the existing studies analyzed the packing characteristics of millimeter-scale particles, so the physical properties are different from those of the micrometer scale. It is difficult to apply to the micrometer scale. In this paper, a three-step experiment was performed using a statistical method to increase packing using micrometer-scale alumina powder. First, a size combination with high packing and a mixing ratio were selected using the mixture test design method, and an appropriate excitation frequency was selected by analyzing the height change according to the frequency change in the vibration test apparatus. Finally, an alumina powder packing experiment was performed based on the experimental results mentioned above. As a result, it was confirmed that the maximum height variation was 42% higher than the maximum value of the 155 measurements performed when selecting the packing size combination. It is thought that this study will serve as basic data for processing and packing research using fine powder.

알루미나 파우더는 산업용으로 널리 사용되는 소재 중 하나이지만 파우더 패킹 상태에 따라 제품의 강도가 변하는 문제점이 있다. 위 문제해결을 위하여 입자 패킹효율을 높이려는 많은 선행연구들이 수행되었지만, 기존 연구는 밀리미터 스케일의 입자의 충진 특성을 분석한 것이 대부분이므로 마이크로미터 스케일과 물리적 특성이 달라, 그 선행연구 결과를 토대로 마이크로미터 스케일에 적용하기 어렵다. 따라서 본 논문에서는 마이크로미터 스케일의 알루미나 파우더를 이용하여 충진률을 높이기 위하여 통계적방법을 이용하여 3단계 실험을 수행하였다. 먼저, 혼합물시험계획법을 이용하여 충진율이 높은 크기 조합 및 혼합 비율을 선정하였으며, 진동 실험장치에서 가진 주파수 변경에 따른 충진 높이 변화를 분석하여 적정 가진 주파수를 선정하였다. 마지막으로 앞서 언급한 실험 결과값을 토대로 알루미나 파우더 충진율 시험을 수행하였다. 그 결과, 최대 높이 변화량은 충진 크기조합 선정을 위해 수행한 최초의 실험 결과 최댓값보다 42% 향상된 것을 확인하였다.

Keywords

Acknowledgement

이 논문은 2019년 중소벤처기업부의 기업연계형 연구개발인력양성사업(S2755803)의지원을받아수행된연구임.

References

  1. Azar, M., Palmero, P., Lombardi, M., Garnier, V., Montanaro, L., Fantozzi, G., and Chevalier, J., "Effect of Initial Particle Packing on the Sintering of Nanostructured Transition Alumina," Journal of the European Ceramic Society, Vol. 28, No. 6, 2008, pp. 1121-1128. https://doi.org/10.1016/j.jeurceramsoc.2007.10.003
  2. Choi, J.R., and Park, S.J., "A Study on Thermal Conductivity and Fracture Toughness of Alumina Nanofibers and Powders-filled Epoxy Matrix Composites," Polymer, Vol. 37, No. 1, 2012, pp. 47-51.
  3. Kim, C.S., and Lee, H.B., "Synthesis of Alumina-Silica ceramic armor material," Composites Research Vol. 18, No. 6, 2005, pp. 40-47.
  4. Li, H., and Zheng, W., "Enhanced Thermal Conductivity of Epoxy/Alumina Composite Through Multiscale-disperse Packing," Journal of Composite Materials, Vol. 55, Issue 1, 2020, pp. 17-25. https://doi.org/10.1177/0021998320942575
  5. An, X.Z., Li, C.X., Yang, R.Y., Zou, R.P., and Yu, A.B., "Experimental study of the Packing of Mono-sized Spheres Subjected to One-dimensional Vibration," Powder Technology, Vol. 196, Issue. 1, 2001, pp. 50-55. https://doi.org/10.1016/j.powtec.2009.06.016
  6. Blair, D.L., Mueggenburg, N.W., Marshall, A.H., Jaeger, H.M., and Nagel, S.R., "Force Distributions in Three-dimensional Granular Assemblies: Effects of Packing Order and Interparticle Friction," Physics Review E, Vol. 63, No. 4, 2001, 041304.
  7. An, X.H., Yang, R.Y., Dong, K.J., and Yu, A.B., "DEM Study of Crystallization of Monosized Spheres under Mechanical Vibrations," Computer Physics Communications, Vol. 182, Issue 9, 2011, pp. 1989-1994. https://doi.org/10.1016/j.cpc.2011.02.006
  8. Sonja, A.A.M., Fennis, J.C., Walraven, J.A., and Den, U., "The Use of Particle Packing Models to Design Ecological Concrete," Heron, Vol. 54, No. 2/3, 2009, pp. 185-204.
  9. Zhang, F., Cronin, K., Lin, Y., Liu, C., and Wang, L., "Effects of Vibration Parameters and Pipe Insertion Depth on the Motion of Particles Induced by Vertical Vibration," Powder Technology, Vol. 333, 2018, pp. 421-428. https://doi.org/10.1016/j.powtec.2018.04.066
  10. Li, C.X., Zou, R.P., Pinson, D., Yu, A.B., and Zhou, Z.Y., "An Experimental Study of Packing of Ellipsoids under Vibrations," Powder Technology, Vol. 361, 2020, pp. 45-41. https://doi.org/10.1016/j.powtec.2019.10.115
  11. Ku, N., Hare, C., Ghadiri, M., Murtagh, M., Oram, P., and Haber, R.A., "Auto-granulation of Fine Cohesive Powder by Mechanical Vibration," Procedia Engineering, Vol. 102, 2015, pp. 72-80. https://doi.org/10.1016/j.proeng.2015.01.108
  12. Pattarino, F., Piepel, G., and Rinaldi, M., "Improvement of a Mixture Experiment Model Relating the Component Proportions to the Size of Nanonized Itraconazole Particles in Extemporary Suspensions," European Journal of Pharmaceutical Sciences, Vol. 117, 2018, pp. 297-300. https://doi.org/10.1016/j.ejps.2018.03.005