DOI QR코드

DOI QR Code

불소화 에틸렌 프로필렌 나노 입자 분산액을 이용한 3차원 다층 미세유체 채널 제작

Fabrication of 3D Multilayered Microfluidic Channel Using Fluorinated Ethylene Propylene Nanoparticle Dispersion

  • 민경익 (경북대학교 의생명융합공학과)
  • Min, Kyoung-Ik (Biomedical Convergence Science and Technology, Kyungpook National University)
  • 투고 : 2021.07.12
  • 심사 : 2021.08.05
  • 발행 : 2021.11.01

초록

본 연구에서는 3차원 다층 미세유체 디바이스를 제작하기 위한 접착제로서 불소화 에틸렌 프로필렌(fluorinated ethylene propylene, FEP) 나노입자를 연구하였다. FEP 분산 용액을 1500 rpm에서 30초 동안 단순 스핀 코팅하여 기판에 3 ㎛ 두께의 균일하게 분포된 FEP 나노 입자 층을 형성하였다. FEP 나노입자는 300 ℃에서 1시간 동안 열처리 후 소수성 박막으로 변형되었으며, FEP 나노입자를 이용하여 제작된 폴리이미드 필름 기반 미세유체 디바이스는 최대 2250 psi의 압력을 견디는 것을 확인하였다. 마지막으로 기존의 포토리소그래피로 제작하기 어려운 16개의 마이크로 반응기로 구성된 3차원 다층 미세유체 디바이스를 FEP가 코팅된 9개의 폴리이미드 필름을 간단한 1단계 정렬로 성공적으로 구현하였다. 개발된 3차원 다층 미세유체 디바이스는 화학 및 생물학의 다양한 응용을 위한 고속대량 스크리닝, 대량 생산, 병렬화 및 대규모 미세유체 통합과 같은 강력한 도구가 될 가능성이 있습니다.

In this study, fluorinated ethylene propylene (FEP) nanoparticle as an adhesive for fabricating a three-dimensional multilayered microfluidic device was studied. The formation of evenly distributed FEP nanoparticles layer with 3 ㎛ in thickness on substrates was achieved by simple spin coating of FEP dispersion solution at 1500 rpm for 30 s. It is confirmed that FEP nanoparticles transformed into a hydrophobic thin film after thermal treatment at 300 ℃ for 1 hour, and fabricated polyimide film-based microfluidic device using FEP nanoparticle was endured pressure up to 2250 psi. Finally, a three-dimensional multilayered microfluidic device composed of 16 microreactors, which are difficult to fabricate with conventional photolithography, was successfully realized by simple one-step alignment of FEP coated nine polyimide films. The developed three-dimensional multilayered microfluidic device has the potential to be a powerful tool such as high-throughput screening, mass production, parallelization, and large-scale microfluidic integration for various applications in chemistry and biology.

키워드

과제정보

이 논문은 2019학년도 경북대학교 신임교수정착연구비에 의하여 연구되었음.

참고문헌

  1. Hessel, V., Renken, A., Schouten, J. C. and Yoshida, J., "Micro Process Engineering," Wiley-VCH, Weinheim (2009).
  2. Dallinger, D., Gutmann, B., and Kappe, C. O., "The Concept of Chemical Generators: On-Site On-Demand Production of Hazardous Reagents in Continuous Flow," Acc. Chem. Res., 53(7), 1330-1341(2020). https://doi.org/10.1021/acs.accounts.0c00199
  3. Mou, L. and Jiang, X., "Materials for Microfluidic Immunoassays: a Review," Adv. Healthcare Mater., 6(15), 1601403(2017). https://doi.org/10.1002/adhm.201601403
  4. Ren, K., Zhou, J. and Wu, H., "Materials for Microfluidic Chip Fabrication," Acc. Chem. Res., 46(11), 2396-2406(2013). https://doi.org/10.1021/ar300314s
  5. McDonald, J. C. and Whitesides, G. M., "Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices," Acc. Chem. Res., 35(7), 491-499(2002). https://doi.org/10.1021/ar010110q
  6. Sia, S. K. and Whitesides, G. M., "Microfluidic Devices Fabricated in Poly(dimethylsiloxane) for Biological Studies," Electrophoresis, 24(21), 3563-3576(2003). https://doi.org/10.1002/elps.200305584
  7. Raj M, K. and Chakraborty, S., "PDMS Microfluidics: A Mini Review," J. Appl. Polym. Sci., 137(27), 48958(2020). https://doi.org/10.1002/app.48958
  8. Lee, J. N., Park, C. and Whitesides, G. M., "Solvent Compatibility of Poly(dimethylsiloxane)-based Microfluidic Devices," Anal. Chem., 75(23), 6544-6554(2003). https://doi.org/10.1021/ac0346712
  9. Dangla, R., Gallaire, F. and Baroud, C. N., "Microchannel Deformations Due to Solvent-induced PDMS Swelling," Lab Chip, 10(21), 2972-2978(2010). https://doi.org/10.1039/c003504a
  10. Min, K. I., Kim, J. O., Kim, H. and Kim, D. P., "Multilayered Film Microreactors Fabricated by a One-step Thermal Bonding Technique with High Reproducibility and Their Applications," Lab Chip, 16(6), 977-983(2016). https://doi.org/10.1039/C5LC01585E
  11. Min, K. I., Lee, H. J. and Kim, D. P., "Three-dimensional Flash Flow Microreactor for Scale-up Production of Monodisperse PEG-PLGA Nanoparticles," Lab Chip, 14(20), 3987-3992(2014). https://doi.org/10.1039/c4lc00700j
  12. You, J. B., Min, K. I., Lee, B., Kim, D. P. and Im, S. G., "A Doubly Cross-linked Nano-adhesive for the Reliable Sealing of Flexible Microfluidic Devices," Lab Chip, 13(7), 1266-1272(2013). https://doi.org/10.1039/c2lc41266g
  13. See Teflon information in the Dupont website, https://www.teflon.com.
  14. Wan, A. M., Sadri, A. and Young, E. W., "Liquid Phase Solvent Bonding of Plastic Microfluidic Devices Assisted by Retention Grooves," Lab Chip, 15(18), 3785-3792(2015). https://doi.org/10.1039/C5LC00729A
  15. Jia, Z. J., Fang, Q. and Fang, Z. L., "Bonding of Glass Microfluidic Chips at Room Temperatures," Anal. Chem., 76(18), 5597-5602(2004). https://doi.org/10.1021/ac0494477
  16. Ogonczyk, D., Wegrzyn, J., Jankowski, P., Dabrowski, B. and Garstecki, P., "Bonding of Microfluidic Devices Fabricated in Polycarbonate," Lab Chip, 10(10), 1324-1327(2010). https://doi.org/10.1039/b924439e
  17. Anderson, J. R., Chiu, D. T., Jackman, R. J., Cherniavskaya, O., McDonald, J. C., Wu, H., Whitesides, S. H. and Whitesides, G. M., "Fabrication of Topologically Complex Three-dimensional Microfluidic Systems in PDMS by Rapid Prototyping," Anal. Chem., 72(14), 3158-3164(2000). https://doi.org/10.1021/ac9912294
  18. Li, X., Yu, Z. T. F., Geraldo, D., Weng, S., Alve, N., Dun, W., Kini, A., Patel, K., Shu, R., Zhang, F., Li, G., Jin, Q. and Fu, J., "Desktop Aligner for Fabrication of Multilayer Microfluidic Devices," Rev. Sci. Instrum., 86(7), 075008(2015). https://doi.org/10.1063/1.4927197
  19. Liu, R. H., Stremler, M. A., Sharp, K. V., Olsen, M. G., Santiago, J. G., Adrian, R. J., Aref, H. and Beebe, D. J., "Passive Mixing in a Three-dimensional Serpentine Microchannel," J. Microelectromech. Syst., 9(2), 190-197(2000). https://doi.org/10.1109/84.846699
  20. Torsen, T., Maerkl, S. J., and Quake, S. R., "Microfluidic Largescale," Science, 298(5593), 580-584(2002). https://doi.org/10.1126/science.1076996
  21. Brouzes, E., Medkova, M., Savenelli, N., Marran, D., Twardowski, M., Hutchison, J. B., Rothberg, J.M., Link, D.R., Perrimon, N. and Samuels, M. L., "Droplet Microfluidic Technology for Single-cell High-throughput Screening," Proc. Natl. Acad. Sci. U.S.A., 106(34), 14195-14200(2009) https://doi.org/10.1073/pnas.0903542106