DOI QR코드

DOI QR Code

Comparison of Degradation due to Fenton Reaction between Reinforced and Non-reinforced Membranes Used in PEMFC

PEMFC에 사용되는 강화막과 비강화막의 Fenton 반응에 의한 열화 비교

  • Oh, Sohyeong (Department of Chemical Engineering, Sunchon National University) ;
  • Yoo, Donggeun (Department of Chemical Engineering, Sunchon National University) ;
  • Lee, Mihwa (Department of Chemical Engineering, Sunchon National University) ;
  • Park, Jisang (Department of Chemical Engineering, Sunchon National University) ;
  • Park, Kwon-Pil (Department of Chemical Engineering, Sunchon National University)
  • 오소형 (순천대학교 화학공학과) ;
  • 유동근 (순천대학교 화학공학과) ;
  • 이미화 (순천대학교 화학공학과) ;
  • 박지상 (순천대학교 화학공학과) ;
  • 박권필 (순천대학교 화학공학과)
  • Received : 2021.07.16
  • Accepted : 2021.08.30
  • Published : 2021.11.01

Abstract

In order to improve the durability of a proton exchange membrane fuel cells (PEMFC), it is essential to improve the durability of the polymer membrane. In order to improve the durability of the membrane, an e-PTFE support and a radical scavenger are added. In this study, the chemical durability of the reinforced membrane with ePTFE support and the non-reinforced membrane was compared by Fenton reaction. In the Fenton experiment of the polymer membrane without the addition of a radical scavenger, the absorption rate of hydrogen peroxide solution and iron ions through the cross section of the specimen cut into small pieces was higher in the reinforced membrane, so that the fluorine outflow concentration was higher. According to the type and amount of radical scavenger added, the fluorine outflow concentration of the reinforced membrane has a large difference of more than 3 times, indicating that the effect of the radical scavenger was stronger than that of the support.

고분자전해질 연료전지(PEMFC)의 내구성을 향상시키기 위해서는 필수적으로 고분자막의 내구성이 향상되어야한다. 고분자막의 내구성을 향상시키기 위해서 e-PTFE 지지체와 라디칼 제거제(Radical Scavenger)가 첨가된다. 본 연구에서는 e-PTFE 지지체가 들어간 강화막(Reinforced Membrane)과 비강화막(Non-reinforced Membrane)의 화학적 내구성을 Fenton 반응에 의해 비교하고자 하였다. 라디칼 제거제가 첨가되지 않은 고분자막의 Fenton 실험에서는 작게 절단한 시편의 단면을 통한 과산화수소 용액과 철이온의 흡수율이 강화막에서 더 높아 불소유출농도가 더 높게 나타났다. 라디칼 제거제의 종류와 첨가량에 따라 강화막의 불소유출농도가 3배 이상의 큰 차이가 발생해서 라디칼 제거제의 영향이 지지체의 영향보다 강한 것을 알 수 있었다.

Keywords

Acknowledgement

이 논문은 순천대학교 교연비 사업에 의하여 연구되었음.

References

  1. Wang, G., Yu, Y., Liu, H., Gong, C., Wen, S., Wang, X. and Tu, Z., "Progress on Design and Development of Polymer Electrolyte Membrane Fuel Cell Systems for Vehicle Applications: A Review," Fuel Processing Technology, 179, 203-228(2018). https://doi.org/10.1016/j.fuproc.2018.06.013
  2. Department of Energy, https://www.energy.gov(2016).
  3. New Energy and Industrial Technology Development Organization, http://wwwnedo.go.jp/english/index.html(2016).
  4. Hydrogen and Fuel Cell Technology Platform in the European Union, www.HFPeurope.org(2016).
  5. Ministry of Science and Technology of the People's Republic of China, http://en.most.gov.cn/eng/index.htm(2016).
  6. Lai, Y. H., Mittelsteadt, C. K., Gittleman,C. S. and Dillard, D. A., "Viscoelastic Stress Analysis of Constrained Proton Exchange Membranes Under Humidity Cycling," J. Fuel Cell Sci. Technol., 6(2): 021002, https://doi.org/10.1115/1.2971045(2009).
  7. Spernjak, D., Mukherjee, P. P., Mukundan, R., Davey, J., Hussey, D. S., Jcobson, D. and Borup, R. L., "Measurement of Water Content in Polymer Electrolyte Membranes Using High Resolution Neutron Imaging," ECS Trans., 33(1), 1451-1456(2010). https://doi.org/10.1149/1.3484637
  8. MacKinnon, S. M., Fuller, Coms, F. D., Schoeneweiss, M. R., Gittleman, C. S., Lai, Y., Jiang, H. R. and Brenner, A. M., "Fuel Cells-proton Exchange Membrane Fuel Cells | Membranes: Design and Characterization,"Encyclopedia of Electrochemical Power Sources, Elsvier, Amsterdam, 2009, Pages 741-754.
  9. Craig, S., Gittleman, C. S., Coms, F. D. and Lai, Y. H., "Polymer Electrolyte Fuel Cell Degradation-Chapter 2-Membrane Durability: Physical and Chemical Degradation," Academic Press, Boston, 2012, Pages 15-88.
  10. Crum, M. and Liu, W., "Effective Testing Matrix for Studying Membrane Durability in PEM Fuel Cells: Part 2. Mechanical Durability and Combined Mechanical and Chemical Durability," ECS Trans., 3(1), 541-550(2006). https://doi.org/10.1149/1.2356175
  11. Tang, Y., Kusoglu, A., Karlsson, A. M., Santare, M. H., William, S. C. and Johnson, B., "Mechanical Properties of a Reinforced Composite Polymer Electrolyte Membrane and its Simulated Performance in PEM Fuel Cells," J. Power Sources, 175(2), 817-825(2008). https://doi.org/10.1016/j.jpowsour.2007.09.093
  12. Khattra, N. S., Lu, Z., Karlsson, A. M., Santare, M. H., Busby, F. C. and Schmiedel, T., "Time-dependent Mechanical Response of a Composite PFSA Membrane," J. Power Sources, 228(15), 256-269(2013). https://doi.org/10.1016/j.jpowsour.2012.11.116
  13. Kusoglu, A., Santare, M. H., Karlsson, A. M., Cleghorn, S. and Johnson, W. B., "Numerical Investigation of Mechanical Durability in Polymer Electrolyte Membrane Fuel Cells," ECS Trans, 157(5), B705-B713(2010).
  14. Kusoglu, A., Karlsson, A. M., Santare, M. H., Cleghorn, S. and Johnson, W. B., "Mechanical Behavior of Fuel Cell Membranes Under Humidity Cycles and Effect of Swelling Anisotropy on the Fatigue Stresses," J. Power Sources, 170(2), 345-358(2007). https://doi.org/10.1016/j.jpowsour.2007.03.063
  15. Wang, H. T., Pan, M. and Li, D., "Ex Situ Investigation of the Proton Exchange Membrane Chemical Decomposition," Int. J. Hydrogen Energy., 33(9), 2283-2288(2008). https://doi.org/10.1016/j.ijhydene.2008.01.052
  16. Kinumoto, T., Inaba, M., Nakayama, Y., Ogata, K., Umebayashi, R. and Takaka, A., "Durability of Perfluorinated Ionomer Membrane Against Hydrogen Peroxide," J. Power Sources, 158(2), 1222-1228(2006). https://doi.org/10.1016/j.jpowsour.2005.10.043
  17. Kim, T. H., Lee, J. H., Cho, G. J. and Park, K. P., "Degradation of Nafion Membrane by Oxygen Radical," Korean Chem. Eng. Res., 44(6), 597-601(2006).
  18. Pearman, B. P., Mohajeri, N., Slattery, D. K., Hampton, M. D., Seal, S. and Cullen, D. A., "The Chemical Behavior and Degradation Mitigation Effect of Cerium Oxide Nanoparticles in Perfluorosulfonic Acid Polymer Electrolyte Membranes," Polym. Degrad. Stab., 98(9), 1766-1772(2013). https://doi.org/10.1016/j.polymdegradstab.2013.05.025
  19. Hao, J., Jiang, Y., Gao, X., Xie, F., Shao, Z. and Yi, B., "Degradation Reduction of Polybenzimidazole Membrane Blended with CeO2 as a Regenerative Free Radical Scavenger," J. Membr. Sci., 522(15), 23-30(2017). https://doi.org/10.1016/j.memsci.2016.09.010
  20. Zhu, H., Pei, S., Tang, J., Li, H., Wang, L., Yuan, W. and Zhang, Y., "Enhanced Chemical Durability of Perfluorosulfonic Acid Membranes Through Incorporation of Terephthalic Acid as Radical Scavenger," J. Membr. Sci., 432(1), 66-72(2013). https://doi.org/10.1016/j.memsci.2012.12.050
  21. Chang, Z., Yan, H., Tian, J., Pan, H. and Pu, H., "The Effect of Electric Field on the Oxidative Degradation of Polybenzimi Dazole Membranes Using Electro-fenton Test," Polym. Degrad. Stab., 138, 98-105(2017). https://doi.org/10.1016/j.polymdegradstab.2017.02.014
  22. Oh, S. H., Lim, D. H., Lee, D. W. and Park, K. P., "Effect of Support on the Performance and Electrochemical Durability of Membrane in PEMFC," Korean Chem. Eng. Res., 58(4), 524-529(2020).
  23. Hwang, B. C., Oh, S. H., Lee, M. S., Lee, D. H. and Park, K. P., "Decrease in Hydrogen Crossover through Membrane of Polymer Electrolyte Membrane Fuel Cells at the Initial Stages of an Acceleration Stress Test," Korean J. Chem. Eng., 35(11), 2290-2295(2018). https://doi.org/10.1007/s11814-018-0142-5
  24. Shi, S., Weber, A. Z., Kusoglu, A., "Structure/property Relationship of Nafion XL composite membranes," J. Membr. Sci., 516(15), 123-134(2016). https://doi.org/10.1016/j.memsci.2016.06.004