DOI QR코드

DOI QR Code

도시표면의 물리적 요소가 대기질에 미치는 영향 - 중국 창춘을 사례로 -

Effects of Physical Factors on Urban Surfaces on Air Quality - Chang Chun, China as an Example -

  • 진촨핑 (강릉원주대학교 대학원 환경조경학과) ;
  • 김태경 (강릉원주대학교 환경조경학과)
  • Jin, Quanping (Dept. of Environmental Landscape, Graduate School of Gangneung-Wonju National University) ;
  • Kim, Tae Kyung (Dept. of Environmental Landscape, Gangneung-Wonju National University)
  • 투고 : 2021.08.10
  • 심사 : 2021.08.30
  • 발행 : 2021.11.05

초록

본 연구는 도시의 표면을 구성하는 물리적 공간요소 가운데 대기질에 영향을 미치는 주요 요인을 찾아 환경개선을 위한 단서를 제공하는 것이 목적이다. 중국의 산업도시인 창춘의 9개 측정소에서 2018년 1월 1일부터 2019년 12월 31일까지의 AQI 농도 자료를 수집하였다. 측정소를 중심으로 반경 300m 내의 지역을 구성하는 도시의 물리적 시설에 대한 유형과 분포 특징을 분석하였다. 측정소를 3개 그룹으로 나눠 계절별로 미세먼지 농도 차이를 분석한 결과, 봄과 겨울에 AQI 농도가 가장 높고, 다음으로 여름, 가장 낮은 계절은 가을이었다. 봄의 AQI 농도가 가장 높은 곳은 F(93.00)·D(91.10)·I(89.20), 여름 농도가 가장 높은 곳은 D(69.05)·A(67.89)·B(84.44), 가을 농도가 가장 높은 곳은 I(62.80)·G(60.84)·D(53.27), 겨울은 I(95.82)·H(95.60)·F(94.04)이었다. SPSS를 이용한 계열분석을 통해 직경 600m인 공간내의 대기지수는 임야, 초지, 나지, 수공간, 수고, 건축면적(평균치), 건물 체적(평균치)과 상관성이 있는 것으로 나타났다. 오염이 심한 봄과 겨울의 수치자료를 통계분석한 결과, 임야면적(43,637m2, 15.44%)과 수면적(18,736m2, 6.63%)이 큰 비율을 차지하고, 건축평균면적(448m2, 0.17%)과 건축평균부피(10,201m3)가 가장 적은 그룹 1(A, B, C)구역의 오염 농도가 가장 낮았다. 반대로 그룹 2(D, E, F)구역은 AQI 농도가 가장 높은 구역으로 임야(1,917m2, 0.68%)와 수면적(0m2, 0%)이 적거나 없고 건축평균면적(1,056m2, 0.37%)과 건축평균부피(17,470m3)가 가장 높았다. AQI 농도가 가장 높은 지역의 특징은 가로수의 수고가 12m 이상인 경우가 다수 확인되었고, 나지면적의 비율이 적을수록 오염도가 낮은 것으로 나타났다. 동일한 방법으로 창춘의 9개 공간의 특징을 분석한 결과, 도시 공간의 물리적 특성에 따른 대기질은 위의 요인들과 밀접한 관련이 있음을 알 수 있었다.

The purpose of this study is to find out the main factors affecting air quality in urban physical space factors, and provide clues for environmental improvement. Nine monitoring stations in China's industrial city, Changchun, collected AQI concentration data from January 1, 2018 to December 31, 2019. This paper analyzes the types and distribution characteristics of urban physical facilities within a radius of 300m with the detection station as the center. The monitoring station is divided into three groups, and the difference in floating dust concentration among the three groups in different seasons is analyzed. The results show that AQI concentration is the highest in spring and winter, followed by summer, and the lowest in autumn. The place with the highest concentrations of AQI in spring are F (93.00), D (91.10), I (89.20), in summer are D (69.05), A (67.89), B (84.44), in autumn are I (62.80), G (60.84), D (53.27), D (53.27), in winter are I (95.82), H (95.60), f (94.04). Through SPSS analysis, it shows that the air index in a space with a diameter of 600 meters is related to forest land, grassland, bare land, water space, tree height, building area (average value), and building volume (average value). According to the statistical analysis results of spring and winter with the most serious pollution, forest land area (43,637m2, 15.44%) and water surface area (18,736m2, 6.63%) accounted for the majority, and group 1 (A, B, C) with the least average building area (448m2, 0.17%) and average building volume (10,201m2) had the lowest pollution concentration. On the contrary, group 2 (D, E, F) had the highest AQI concentration, with less or no woodland (1,917m2, 0.68%) and water surface area (0m2, 0%), and the highest average building area (1,056m2, 0.37%) and average building volume (17,470m3). It is confirmed that the characteristics of the area with the highest AQI concentration are that the more the site ratio of tree height above 12m, the smaller the site ratio of bare land, and the lower the pollution degree. On the contrary, the larger the area of bare land, the higher the pollution degree. By analyzing the characteristics of nine monitoring stations in Changchun, it can be seen that the air quality brought by the physical characteristics of urban space is closely related to the above factors.

키워드

참고문헌

  1. Beckett, K. P., P. H. Freer-smith and G. Taylor(1998) Urban woodlands: their role in reducing the effects of particulate pollution. Environmental Pollution 99(3): 347-360. https://doi.org/10.1016/S0269-7491(98)00016-5
  2. Bao, H. G., C. Wang, G. F. Qie, W. G. Du and L. Sun(2016) The effect of forest shelter belt on subduction of PM2.5 in urban parks [J]. Ecology and Environmental Sciences 25(6): 987-993.
  3. Cavanagh, J. A. E., R. P. Zawar and W. J. Gaines(2009) Spatial attenuation of ambient particulate matter air pollution within an urbanized native forest patch. Urban Forestry & Urban Greening 8(1): 21-30. https://doi.org/10.1016/j.ufug.2008.10.002
  4. Chai, Y. X., N. Zhu and H. J. Han(2002) Dust removal effect of urban tree species in Harbin. Northeast Forestry University 13(9):1121-1126.
  5. Dzierzanowski, K., R. Popek, H. Gawronska, A. Saeb and S. W. Gawronski(2011) Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. International Journal of Phytoremediation 13(10): 1037-1046. https://doi.org/10.1080/15226514.2011.552929
  6. Fowler, D., U. Skiba, E. Nemitz, F. Choubedar, D. Branford, R. Donovan and P. Rowland(2004) Measuring aerosol and heavy metal deposition on urban woodland and grass using inventories of 210 Pb and metal concentrations in soil. Water, Air, & Soil Pollution 4(2/3): 483-499. https://doi.org/10.1023/B:WAFO.0000028373.02470.ba
  7. Flocchini, R., T. A. Cahill and R. Matsumura(1994) Study of Fugitive PMl0 Emissions from Selected Agricultural Practices on Selected Agricultural Soils. University of California.
  8. Fang, Y., J. C. Zhang, and Y. H. Wang(2007) Dustfall adsorbing capacity of major species of greening trees in Nanjing and its law. Journal of Ecology and Rural Environment 23(2): 36-40. https://doi.org/10.3969/j.issn.1673-4831.2007.02.008
  9. Freer, S. P. H., K. P. Beckett and G. Taylor(2005) Deposition velocities to Sorbus aria, Acer campestre, Populus deltoides trichocarpa 'Beaupre 'Pinus nigra and Cupressocyparis leylandii for coarse, fine and ultra-fine particles in the urban environment. Environmental Pollution 133(1): 157-167. https://doi.org/10.1016/j.envpol.2004.03.031
  10. Gromke, C. and B. Ruck(2009) On the impact of trees on dispersion processes of traffic emission in street canyons. Boundary-layer Meteorology. 131(1): 19-34. https://doi.org/10.1007/s10546-008-9301-2
  11. Guo, E. G., C. Wang, G. F. Qie, C. Fang, Z. W. Sun and Z. H. Zhou(2010) Seasonal variations of airborne particulate matter in typical recreation forests in the westmountain of Bei-Jing. Joumal of Northeast Forestry 38(10): 55-57.
  12. Hu, M., Q. Tang, J. F. Peng, E. Y. Wang, S. L. Wang and F. H. Chai,(2011) Study on Characterization and Source Apportionment of Atmospheric Particulate Matter in China. 1673-288X 05-0015-05.
  13. Liu, L. M and M. Liu(2000) Vegetation quantity- a new concept of urban greening assessment. Chinese Landscape Architecture 5:32-34.
  14. Liu, Y., Z. F. Su and Y. F. Wang(2002) Study on dustproof function of suitable afforestion sampling in Shihezi. Arid Environmental Monitoring 16(2): 98-99. 125. https://doi.org/10.3969/j.issn.1007-1504.2002.02.013
  15. Li, Y. Z and J. H. Ma(2011) Heavy metals pollution in roadsides soils and protective effect of plant barriers along expressway. Journal of Soil and Water Conservation 25(1): 105-109.
  16. Li, G., S. B. Fan, L. H. Zhong, Y. H. Huang and G. Tian(2004) The study of road dust controlling in Beijing city. Urban Management and Technology(04):151-152, 158.
  17. Pan, C. Z., G. C. Chen, Q. L. Yang, D. Y. Wang, Q. Zhao, X. J. Zhou and Y. Zhang(2004) Study on the concentration distribution of PM10/PM2.5 related to traffic-busy road in Chongqing downtown area. Journal of Southwest Agricultural University: Natural Science 2004, 26(5): 567-579. https://doi.org/10.3969/j.issn.1673-9868.2004.05.014
  18. Pullman, M. R(2009) Conifer PM2.5 Deposition and Re-suspension in Wind and Rain Events[D]. America: Cornell University.
  19. Popek, R., H. Gawronska, M. Wrochna, S. W. Gawronski and A. Saeb(2013) Particulate matter on foliage of 13 woody species: deposition on surfaces and phytostabilisation in waxes a 3 year study. International Journal of Phytoremediation 15(3): 245-256. https://doi.org/10.1080/15226514.2012.694498
  20. Qi, F. Y., H. F. Guo., Y. Zhao and Y. F. Zhu(2009) The effect of greenbelt in road on atmospheric particles concentration. Henan Science 27(6): 734-736. https://doi.org/10.3969/j.issn.1004-3918.2009.06.028
  21. Ren, Q. W., C. Wang, G. F. Qie and Y. Yang(2006) Airborne particulates in urban greenland and its relationship with airborne microbes. Urban Environment & Urban Ecology 19(5): 22-25.
  22. Sehmel, G. A(1980) Particle and gas dry deposition: A review. Atmospheric Environment 14(9): 983-1011. https://doi.org/10.1016/0004-6981(80)90031-1
  23. Su, J. X., S. J. Jin, J. G. Yan, Q. D. Zhang, R. R. Gao and Y. M. Lu(2002) Study on the dust catching property of the campus plants in Shanxi Normal University. Journal of Shanxi Normal University: Natural Science Edition 20(2): 86-88.
  24. Su, Z. F., Y. Liu and Q. F. Peng(2002) Study on dust detention functions of the different greenland. Arid Environmental Monitoring 03 :162-163.
  25. Sehmel, G. A(1980) Particle and gas dry deposition: a review. Atmospheric Environment. 14(9) : 983-1011. https://doi.org/10.1016/0004-6981(80)90031-1
  26. Tallis, M., G. Taylor, D. Sinnett and S. P. Freer(2011) Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments. Landscape and Urban Planting 103(2): 129-138. https://doi.org/10.1016/j.landurbplan.2011.07.003
  27. Wang, L., S. Ha, L. Y. Liu and S. Y. Gao(2006) Effects of weather condition in spring on particulates density on conifers leaves in Beijing. Chinese Journal of Ecology 2006 25(8): 998-1002.
  28. Wang, Z. H and Li, J. L.(2006) Capacity of dust uptake by leaf surface of Euonymus japonicus Thunb. and the morphology of captured particle in air polluted city. Ecology and Environment 15(2): 327-330. https://doi.org/10.3969/j.issn.1674-5906.2006.02.027
  29. Wu, Z. P., C. Wang, X. J. Hou and W. W. Yang(2008) Variation of air PM2.5 concentration in six urban greenlands. Journal of Anhui Agriculture University 35(4): 494-498.
  30. Yang, Y. R., Y. L. Yin and H. B. Xu(2012) Effects of forest belts with different widths on heavy metal content in rice leaf and brown rice in crop field on both sides of national road. Journal of Plant Resources and Environment 21(2): 84-88. https://doi.org/10.3969/j.issn.1674-7895.2012.02.013
  31. Yu, X. R(2008) The Characteristic of Foliar Dust of Main Afforestation Tree Species in Nanjing and Association with Leaf's Surface Micro Structure[D]. Nanjing: Nanjing Forestry University.
  32. Zhang, J and X. Y. Wu(2011) Detaining dust law of landscape greening plants leaves in urban area of Fuxin. Journal of Liaoning Technical University: Natural Science 30(6): 905-908.
  33. Zhang, J. Y., X. Y. Liu, M. Zou, H. Li and Y. L. Cheng(2013) Comparison of dust retention capacities among thirty-seven species of road landscape trees. School of Life Science and Technology. Xinxiang University. 28(06): 905-912.
  34. www.bigemap.com
  35. www.globallandcover.com
  36. www.zq12369.com
  37. www.cnemc.cn