DOI QR코드

DOI QR Code

Structural bonding for civil engineering structures: New model of composite I-steel-concrete beam strengthened with CFRP plate

  • 투고 : 2020.11.03
  • 심사 : 2021.08.28
  • 발행 : 2021.11.10

초록

In this paper, a composite beam element has been developed in this study, the composite steel-concrete beam strengthened with CFRP plate element can be used to model the nonlinear behavior of composite beams. The problem of slip and interfacial stresses in composite steel-concrete beam strengthened with CFRP plate is analyzed using linear elastic theory. The analysis is based on the deformation compatibility approach, where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. The adopted model takes into account the adherend shear deformations by assuming a linear shear stress through the depth of the composite steel-concrete beam. This solution is intended for application to beams made of all kinds of materials bonded with a thin composite plate. For composite steel-concrete beam section, a geometrical coefficient is determined to show the effect of the adherend shear deformations. The theoretical predictions are compared with other existing solutions analytical and experimental which demonstrates the accuracy of the used element. Finally, numerical comparisons between the existing solutions and the present new solution enable a clear appreciation of the effects of various parameters. This research is helpful for the understanding on mechanical behaviour of the interface and design of such structures.

키워드

과제정보

This research was supported by the Algerian Ministry of Higher Education and Scientific Research (MESRS) as part of the grant for the PRFU research project n° A01L02UN140120200002 and by the University of Tiaret, in Algeria.

참고문헌

  1. Abdelhak, Z., Benferhat, R., Tahar, H.D. and Tounsi, A. (2021), "Analysis on the buckling of imperfect functionally graded sandwich plates using new modified power-law formulations", Struct. Eng. Mech., 77(6), 797-807. http://dx.doi.org/10.12989/sem.2021.77.6.797.
  2. Al-Furjan M.S.H., Habibi, M., Jung, D.W. and Tounsi, A. (2020b), "Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems", Eng. with Comput., https://doi.org/10.1007/s00366-020-01200-x.
  3. Al-Furjan M.S.H., Habibi, M., Rahimi, A., Chen, G., Safarpour, M., Safarpou, M. and Tounsi, A. (2020a), "Chaotic simulation of the multi-phase reinforced thermo-elastic disk using GDQM", Eng. with Comput., https://doi.org/10.1007/s00366-020-01144-2
  4. Amara, K., Antar, K. and Benyoucef, S. (2019), "Hygrothermal effects on the behavior of reinforced-concrete beams strengthened by bonded composite laminate plates", Struct. Eng. Mech., 69(3), 327-334. https://doi.org/10.12989/sem.2019.69.3.327.
  5. Asghar S. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concrete, 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133.
  6. Benachour, A., Benyoucef, S., Tounsi, A. and Adda bedia, E.A. (2008), "Interfacial stress analysis of steel beams reinforced with bonded prestressed FRP plate", Eng. Struct., 30, 3305-3015. https://doi.org/10.1016/j.engstruct.2008.05.007.
  7. Bouakaz, K., Hassaine Daouadji, T., Meftah, S.A., Ameur, M., Tounsi, A. and Adda Bedia, E.A. (2014), "A Numerical analysis of steel beams strengthened with composite materials", Mech. Compos. Mater., 50(4), 685-696. https://doi.org/10.1007/s11029-014-9435-x.
  8. Chaded, A., Daouadji, T.H., Abderezak, R., Belkacem, A., Abbes, B., Rabia, B. and Abbes, F. (2018), "A high-order closed-form solution for interfacial stresses in externally sandwich FGM plated RC beams", Adv. Mater. Res., 6(4), 317-328. https://doi.org/10.12989/amr.2017.6.4.317.
  9. Chergui, S., Tahar Hassaine, D., Mostefa, H., Bensaid, B. and Sofiane, A. (2019), "Interfacial stresses in damaged RC beams strengthened by externally bonded prestressed GFRP laminate plate: Analytical and numerical study", Adv. Mater. Res., 8(3), 197-217. https://doi.org/10.12989/amr.2019.8.3.197.
  10. Cuong-Le, T., Nguyen, K.O., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. And Abdel-Wahab, M. (2020a), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 259, 1113216. https://doi.org/10.1016/j.compstruct.2020.113216.
  11. Cuong-Le, T., Nguyen, T.N., Vu, T.H. and Abdel-Wahab, M. (2020b), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. with Comput., https://doi.org/10.1007/s00366-020-01154-0.
  12. David, H., Rodrigo, G., Carlos, S. and Dinar, C. (2020), "GBT-based time-dependent analysis of steel-concrete composite beams including shear lag and concrete cracking effects", Thin-Wall. Struct., 150, 106706. https://doi.org/10.1016/j.tws.2020.106706.
  13. Guenaneche, B., Tounsi, A. and Adda Bedia, E.A. (2019), "Improved analytical method for adhesive stresses in plated beam: Effect of shear deformation", Adv. Concrete Constr., 7(3), 151-166. http://doi.org/10.12989/acc.2019.7.3.151.
  14. Hadj, B., Rabia, B. and Tahar, H.D. (2021), "Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity", Coupled Syst. Mech., 10(1), 61-77. http:// doi.org/10.12989/csm.2021.10.1.061.
  15. Hassaine Daouadji T., Bensattalah, T., Rabahi A. and Tounsi, A. (2021a), "New approach of composite wooden beam- reinforced concrete slab strengthened by external bonding of prestressed composite plate: Analysis and modeling", Struct. Eng. Mech., 78(3), 319-332. http:// doi.org/10.12989/sem.2021.78.3.31.
  16. Hassaine Daouadji T., Rabahi A., Benferhat R. and Tounsi, A. (2021b), "Performance of damaged RC continuous beams strengthened by prestressed laminates plate: Impact of mechanical and thermal properties on interfacial stresses", Coupled Syst. Mech., 10(2), 161-184. http://doi.org/10.12989/csm.2021.10.2.161
  17. Hassaine Daouadji, T. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Des., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.
  18. Hassaine Daouadji, T., Rabahi, A. and Benferhat, R. (2020), "Flexural performance of wooden beams strengthened by composite plate", Struct. Monit. Maint., 7(3), 233-259. http://doi.org/10.12989/smm.2020.7.3.233
  19. Hassaine Daouadji, T., Rabahi, A., Benferhat, R. and Adim, B. (2019), "Flexural behaviour of steel beams reinforced by carbon fibre reinforced polymer: Experimental and numerical study", Struct. Eng. Mech., 72(4), 409-419. https://doi.org/10.12989/sem.2019.72.4.409.
  20. He, X., Zhou, C.Y. and Wang, Y. (2019), "Interfacial stresses in reinforced concrete cantilever members strengthened with fibre-reinforced polymer laminates", Adv. Struct. Eng., 1-12. https://doi.org/10.1177/1369433219868933.
  21. Jones, R., Swamy, R.N. and Charif, A. (1988), "Plate separation and anchorage of reinforced concrete beams strengthened by epoxy - bonded steel plates", Struct. Engineer, 66(5), 85-94. http://worldcat.org/issn/14665123.
  22. Kablia, A., Benferhat, R., Hassaine Daouadji, T. and Bouzidene, A. (2020), "Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions", Coupled Syst. Mech., 9(6), 575-597. http://doi.org/10.12989/csm.2020.9.6.575.
  23. Khadimallah M.A., Hussain, A., Khedher, K.M., Naeem, M.N. and Tounsi, A. (2020), "Backward and forward rotating of FG ring support cylindrical shells", Steel Compos. Struct., 37(2), 137-150 http:// doi.org/10.12989/scs.2020.37.2.137.
  24. Liu, S., Zhou, Y., Zheng, Q., Zhou, J., Fengnian, J. and Fan, H. (2019), "Blast responses of concrete beams reinforced with steel-GFRP composite bars", Structures, 200-212. https://doi.org/10.1016/j.istruc.2019.08.010.
  25. Panjehpour, M, Farzadnia, N., Demirboga, R. and Ali, A.A.A. (2016), "Behavior of high-strength concrete cylinders repaired with CFRP sheets", J. Civil Eng. Management, 22(1), 56-64. https://doi.org/10.3846/13923730.2014.897965.
  26. Panjehpour, M., Ali, A.A.A., Voo, Y.L. and Nora, A.F. (2014), "Effective compressive strength of strut in CFRP-strengthened reinforced concrete deep beams following ACI 318-11", Comput. Concrete, 13(1), 135-165. https://doi.org/10.12989/cac.2014.13.1.135.
  27. Pello, L., Leire, G., Ignacio, P. and Jose-Tomas, S.J. (2020), "Flexural strengthening of low-grade reinforced concrete beams with compatible composite material: Steel Reinforced Grout (SRG)", Constr. Build. Mater., 235, article 117790. https://doi.org/10.1016/j.conbuildmat.2019.117790.
  28. Rabahi, A., Benferhat, R. and Hassaine Daouadji, T. (2019), "Elastic analysis of interfacial stresses in prestressed PFGM-RC hybrid beams", Adv. Mater. Res., 7(2), 83-103. https://doi.org/10.12989/amr.2018.7.2.083.
  29. Rabahi, A., Hassaine Daouadji, T. and Benferhat, R. (2020), "Analysis of interfacial stresses of the reinforced concrete foundation beams repairing with composite materials plate", Coupled Syst. Mech., 9(5), 473-498. http://doi.org/10.12989/csm.2020.9.5.473.
  30. Rabahi, A., Hassaine Daouadji, T. and Benferhat, R. (2021a), "Modeling and analysis of the imperfect FGM-damaged RC hybrid beams", Adv. Comput. Design, 6(2), 117-133. http://doi.org/10.12989/acd.2021.6.2.117
  31. Rabahi, A., Hassaine Daouadji, T. and Benferhat, R. (2021b), "Aluminum beam reinforced by externally bonded composite materials", Adv. Mater. Res., 10(1), 23-44. http://doi.org/10.12989/amr.2021.10.1.023.
  32. Rabia, B., Hassaine Daouadji, T. and Rabahi, A. (2020), "Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis", Adv. Mater. Res., 9(4), 265-287. http://doi.org/10.12989/amr.2020.9.4.265.
  33. Rabia, B., Tahar, H.D. and Abderezak, R. (2020), "Thermomechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation", Coupled Syst. Mech., 9(6), 499-519. http://doi.org/10.12989/csm.2020.9.6.499.
  34. Rabia, B., Tahar, H.D. and Abderezak, R. (2021b), "Effect of air bubbles in concrete on the mechanical behavior of RC beams strengthened in flexion by externally bonded FRP plates under uniformly distributed loading", Compos. Mater. Eng., 3(1), 41-55. http://doi.org/ 10.12989/cme.2021.3.1.041.
  35. Rabia, B., Tahar, H.D., and Abderezak, R. (2021a), "Effect of porosity on fundamental frequencies of FGM sandwich plates", Compos. Mater. Eng., 3(1), 25-40. http://doi.org/10.12989/cme.2021.3.1.025.
  36. Shariati, A., Ghabussi, A., Habibi, M., Safarpour, H., Safarpour, M., Tounsi, A. and Safa, M. (2020), "Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation", Thin-Wall. Struct., 154, 106840. https://doi.org/10.1016/j.tws.2020.106840.
  37. Smith, S.T. and Teng, J.G. (2002), "Interfacial stresses in plated beams", Eng. Struct., 23(7), 857-871. http://doi.org/10.1016/S0141-0296(00)00090-0.
  38. Tayeb, B. and Tahar, H.D. (2020), "Improved analytical solution for slip and interfacial stress in composite steel-concrete beam bonded with an adhesive", Adv. Mater. Res., 9(2), 133-153. https://doi.org/10.12989/amr.2020.9.2.133.
  39. Tayeb, B., Tahar, H.D. and Zidour, M. (2020), "Influences the Shape of the Floor on the Behavior of Buildings Under Seismic Effect", Proceedings of the 4th International Symposium on Materials and Sustainable Development, Vol1 - Nano Technology and Advanced Materials, 26-42. https://doi.org/10.1007/978-3-030-43268-3_3
  40. Tlidji Y., Benferhat, R. and Tahar, H.D. (2021), "Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity", Struct. Eng. Mech., 77(2), 217-229. http://doi.org/10.12989/sem.2021.77.2.217.
  41. Tounsi, A. (2006), "Improved theoretical solution for interfacial stresses in concrete beams strengthened with FRP plate", Int. J. Solids Struct., 43(14-15), 4154-4174. https://doi.org/10.1016/j.ijsolstr.2005.03.074.
  42. Tounsi, A., Hassaine Daouadji, T., Benyoucef, S. and Adda bedia, E.A. (2008), "Interfacial stresses in FRP-plated RC beams: Effect of adherend shear deformations", Int. J. Adhesion and Adhesives, 29, 313-351. https://doi.org/10.1016/j.ijadhadh.2008.06.008.
  43. Wang, Y.H., Yu, J., Liu, J.P. and Zhou, B.X. and Chen, Y.F. (2020) "Experimental study on assembled monolithic steel-prestressed concrete composite beam in negative moment", J. Constr. Steel Res., 167, 105667. https://doi.org/10.1016/j.jcsr.2019.06.004.