DOI QR코드

DOI QR Code

The response of viscoelastic composite laminated microplate under low-velocity impact based on nonlocal strain gradient theory for different boundary conditions

  • Rashidpour, Peyman (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Ghadiri, Majid (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Zajkani, Asghar (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University)
  • 투고 : 2019.12.16
  • 심사 : 2021.09.15
  • 발행 : 2021.11.10

초록

The present research aims to analyze the response of viscoelastic laminated composite microplate under microparticle low-velocity impact. Hertz contact law is used to model the impact phenomenon between the microparticle and the microplate. According to Kelvin-Voigt theory, the realistic behavior of the structure is considered by considering the viscoelastic properties. The governing equations of the system are derived based on the first-order shear deformation plate theory (FSDT) and the nonlocal strain gradient theory (NSGT) by employing Hamilton's principle. Galerkin's method is employed to solve differential equations of microplate with different boundary conditions. Afterward, the system of time-dependent equations by applying the Newmark's method is solved. The parametric study is presented to examine the effect of particle radius, particle initial velocity, nonlocal parameter, length scale parameter, viscoelastic modulus, fiber orientation, and different boundary conditions on the impact response of microplate.

키워드

참고문헌

  1. Aifantis, E.C. (1992), "On the role of gradients in the localization of deformation and fracture", Int. J. Eng. Sci., 30(10), 1279-1299. https://doi.org/10.1016/0020-7225(92)90141-3.
  2. Beni, Y.T., Mehralian, F. and Razavi, H. (2015), "Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory", Composite Structures, 120, 65-78. https://doi.org/10.1016/j.compstruct.2014.09.065.
  3. Cesari, F., Dal Re, V., Minak, G. and Zucchelli, A. (2007), "Damage and residual strength of laminated carbon-epoxy composite circular plates loaded at the centre", Compos. Part A: Appl. Sci. Manufact., 38(4), 1163-1173. https://doi.org/10.1016/j.compositesa.2006.04.013.
  4. Chen, C.Q., Shi, Y., Zhang, Y.S., Zhu, J. and Yan, Y.J. (2006), "Size dependence of Young's modulus in ZnO nanowires", Phys. Review Lett., 96(7), 075505. https://doi.org/10.1103/PhysRevLett.96.075505.
  5. Civalek, O. and Akgoz, B. (2013), "Vibration analysis of micro-scaled sector shaped graphene surrounded by an elastic matrix", Comput. Mater. Sci., 77, 295-303. https://doi.org/10.1016/j.commatsci.2013.04.055.
  6. Dobyns, A.L. (1981), "Analysis of simply-supported orthotropic plates subject to static and dynamic loads", AiAA J., 19(5), 642-650. https://doi.org/10.2514/3.50984.
  7. Ebrahimi, F. and Barati, M.R. (2017), "Vibration analysis of viscoelastic inhomogeneous nanobeams resting on a viscoelastic foundation based on nonlocal strain gradient theory incorporating surface and thermal effects", Acta Mechanica, 228(3), 1197-1210. https://doi.org/10.1007/s00707-016-1755-6.
  8. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  9. Fan, Y., Xiang, Y., Shen, H.S. and Hui, D. (2018), "Nonlinear low-velocity impact response of FG-GRC laminated plates resting on visco-elastic foundations", Compos. Part B: Eng., 144, 184-194. https://doi.org/10.1016/j.compositesb.2018.02.016.
  10. Farokhi, H., Ghayesh, M.H., Gholipour, A. and Tavallaeinejad, M. (2017), "Nonlinear oscillations of viscoelastic microplates", Int. J. Eng. Sci., 118, 56-69. https://doi.org/10.1016/j.ijengsci.2017.05.006.
  11. Ghayesh, M.H. (2012), "Coupled longitudinal-transverse dynamics of an axially accelerating beam", J. Sound Vib., 331(23), 5107-5124. http://dx.doi.org/10.1016/j.jsv.2012.06.018.
  12. Ghayesh, M.H. (2012), "Nonlinear dynamic response of a simply-supported Kelvin-Voigt viscoelastic beam, additionally supported by a nonlinear spring", Nonlinear Anal.: Real World Appl., 13(3), 1319-1333. http://doi.org/10.1016/j.nonrwa.2011.10.009.
  13. Ghayesh, M.H. (2012), "Stability and bifurcations of an axially moving beam with an intermediate spring support", Nonlinear Dynam., 69(1), 193-210. https://doi.org/10.1007/s11071-011-0257-2.
  14. Ghayesh, M.H. (2018), "Dynamics of functionally graded viscoelastic microbeams", Int. J. Eng. Sci., 124, 115-131. https://doi.org/10.1016/j.ijengsci.2017.11.004.
  15. Ghayesh, M.H. (2019), "Mechanics of viscoelastic functionally graded microcantilevers", Eur. J. Mech. -A/Solids, 73, 492-499. http://doi.org/10.1016/j.euromechsol.2018.09.001.
  16. Ghayesh, M.H. (2019), "Viscoelastic mechanics of Timoshenko functionally graded imperfect microbeams", Compos. Struct., 225, 110974. https://doi.org/10.1016/j.compstruct.2019.110974.
  17. Ghayesh, M.H. and Amabili, M. (2012), "Nonlinear dynamics of axially moving viscoelastic beams over the buckled state", Comput. Struct., 112, 406-421. http://doi.org/10.1016/j.compstruc.2012.09.005.
  18. Gong, S.W., Toh, S.L. and Shim, V.P.W. (1994), "The elastic response of orthotropic laminated cylindrical shells to low-velocity impact", Compos. Eng., 4(2), 247-266. https://doi.org/10.1016/0961-9526(94)90030-2.
  19. Heydari, M.M., Kolahchi, R., Heydari, M. and Abbasi, A. (2014), "Exact solution for transverse bending analysis of embedded laminated Mindlin plate", Struct. Eng. Mech., 49(5), 661-672. https://doi.org/10.12989/sem.2014.49.5.661.
  20. https://doi.org/10.1080/15376494.2013.828814.
  21. Hung, E.S. and Senturia, S.D. (1999), "Extending the travel range of analog-tuned electrostatic actuators", J. Microelectromech. Syst., 8(4), 497-505. https://doi.org/10.1109/84.809065.
  22. Ke, L.L. and Wang, Y.S. (2011), "Flow-induced vibration and instability of embedded double-walled carbon nanotubes based on a modified couple stress theory", Physica E: Low-Dimensional Syst. Nanostruct., 43(5), 1031-1039. https://doi.org/10.1016/j.physe.2010.12.010.
  23. Khaniki, H.B. and Hosseini-Hashemi, S. (2017), "Dynamic response of biaxially loaded double-layer viscoelastic orthotropic nanoplate system under a moving nanoparticle", Int. J. Eng. Sci., 115, 51-72.. https://doi.org/10.1016/j.ijengsci.2017.02.005.
  24. Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
  25. Leissa, A.W. (1969), Vibration of plates, OHIO STATE UNIV COLUMBUS.
  26. Li, L. and Hu, Y. (2017), "Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects", Int. J. Mech. Sci., 120, 159-170. https://doi.org/10.1016/j.ijmecsci.2016.11.025.
  27. Li, L., Li, X. and Hu, Y. (2016), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2017.06.026.
  28. Li, X., Bhushan, B., Takashima, K., Baek, C.W. and Kim, Y.K. (2003), "Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques", Ultramicroscopy, 97(1-4), 481-494. https://doi.org/10.1016/S0304-3991(03)00077-9.
  29. Lifshitz, J.M. (1976), "Impact strength of angle ply fiber reinforced materials", J. Compos. Mater., 10(1), 92-101. https://doi.org/10.1177/002199837601000108.
  30. Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
  31. Lou, J., He, L., Du, J. and Wu, H. (2016), "Nonlinear analyses of functionally graded microplates based on a general four-variable refined plate model and the modified couple stress theory", Compos. Struct., 152, 516-527. https://doi.org/10.1016/j.compstruct.2016.05.001.
  32. Malekzadeh, K., Khalili, S.M.R. and Veysi Gorgabad, A. (2015), "Dynamic response of composite sandwich beams with arbitrary functionally graded cores subjected to low-velocity impact", Mechanics of Advanced Materials and Structures, 22(8), 605-618. https://doi.org/10.1080/15376494.2013.828814
  33. Malhotra, A. and Guild, F.J. (2014), "Impact damage to composite laminates: effect of impact location", Appl. Compos. Mater., 21(1), 165-177. https://doi.org/10.1007/s10443-013-9382-z.
  34. McFarland, A.W. and Colton, J.S. (2005), "Role of material microstructure in plate stiffness with relevance to microcantilever sensors", J. Micromech. Microeng., 15(5), 1060. https://doi.org/10.1088/0960-1317/15/5/024.
  35. Mehralian, F. and Tadi Beni, Y. (2017), "A nonlocal strain gradient shell model for free vibration analysis of functionally graded shear deformable nanotubes", Int. J. Eng. Appl. Sci., 9, 88-102. https://doi.org/10.24107/ijeas.309818.
  36. Miller, R.E. and Shenoy, V.B. (2000), "Size-dependent elastic properties of nanosized structural elements", Nanotechnology, 11(3), 139. https://doi.org/10.1088/0957-4484/11/3/301.
  37. Moser, Y. and Gijs, M.A. (2007), "Miniaturized flexible temperature sensor", J. Microelectromech. Syst., 16(6), 1349-1354. https://doi.org/10.1109/JMEMS.2007.908437.
  38. Nevill, G.E., Ross, C.A. and Jones, E.R. (1971), "Dynamic compressive strength and failure of steel reinforced epoxy composites".
  39. Noroozi, M., Ghadiri, M. and Zajkani, A. (2019), "Dynamic response of a size-dependent nanobeam to low velocity impact by a nanoparticle with considering atomic interaction forces", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 233(18), 6640-6655. https://doi.org/10.1177/0954406219864986.
  40. Ramezani, S. (2013), "Nonlinear vibration analysis of microplates based on strain gradient elasticity theory", Nonlinear Dynam., 73(3), 1399-1421. https://doi.org/10.1007/s11071-013-0872-1.
  41. Ramkumar, R.L. and Chen, P.C. (1983), "Low-velocity impact response of laminated plates", AIAA J., 21(10), 1448-1452. https://doi.org/10.2514/3.8266.
  42. Ranjbar, M. and Feli, S. (2018), "Low velocity impact analysis of an axially functionally graded carbon nanotube reinforced cantilever beam", Polymer Compos., 39(2), 969-983. https://doi.org/10.1002/pc.24386.
  43. Rao, S.S. and Yap, F.F (2011), Mechanical Vibrations (Vol. 4). Prentice Hall Upper Saddle River.
  44. Reddy, J.N. (2004), "An Introduction to Nonlinear Finite Element Analysis, 292-297, New York: Oxford University Press.
  45. Richardson, M.O.W. and Wisheart, M.J. (1996), "Review of low-velocity impact properties of composite materials", Compos. Part A: Appl. Sci. Manufact., 27(12), 1123-1131. https://doi.org/10.1016/1359-835X(96)00074-7.
  46. Rotem, A. and Lifshitz, J.M. (1971), "Longitudinal strength of unidirectional fibrous composite under high rate of loading", Proceedings of the 26th Annual Tech. Conf. Soc. Plastics Industry Reinforced Plastics, Composites Division, Washington, DC, Section.
  47. Senturia, S.D. (2001), Microsystem Design, Boston, Massachussets.
  48. Shariyat, M. and Nasab, F.F. (2014), "Eccentric low-velocity impact analysis of transversely graded plates with Winkler-type elastic foundations and fully or partially supported edges", Thin-Wall. Struct., 84, 112-122. https://doi.org/10.1016/j.tws.2014.05.011.
  49. Shen, L.E., Shen, H.S. and Zhang, C.L. (2010), "Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments", Comput. Mater. Sci., 48(3), 680-685. https://doi.org/10.1016/j.commatsci.2010.03.006.
  50. Simsek, M., Aydin, M., Yurtcu, H.H. and Reddy, J.N. (2015), "Size-dependent vibration of a microplate under the action of a moving load based on the modified couple stress theory", Acta Mechanica, 226(11), 3807-3822. https://doi.org/10.1007/s00707-015-1437-9.
  51. Steele, C.R. and Balch, C.D. (2009), Introduction to the Theory of Plates. Division of Mechanics and Computation, Department of Mechanical Engineering Stanford University.
  52. Sun, C.T. and Chattopadhyay, S. (1975), "Dynamic response of anisotropic laminated plates under initial stress to impact of a mass", J. Appl. Mech., 42(3), 693-698. https://doi.org/10.1115/1.3423664.
  53. Thai, H.T. and Choi, D.H. (2013), "A simple first-order shear deformation theory for laminated composite plates", Compos. Struct., 106, 754-763. https://doi.org/10.1016/j.compstruct.2013.06.013.
  54. Wang, L. (2010), "Wave propagation of fluid-conveying single-walled carbon nanotubes via gradient elasticity theory", Comput. Mater. Sci., 49(4), 761-766. https://doi.org/10.1016/j.commatsci.2010.06.019.
  55. Whitney, J.M. and Pagano, N.J. (1970), "Shear deformation in heterogeneous anisotropic plates", J. Appl. Mech., 37(4), 1031-1036. https://doi.org/10.1115/1.3408654.
  56. Xu, F., Qin, Q., Mishra, A., Gu, Y. and Zhu, Y. (2010), "Mechanical properties of ZnO nanowires under different loading modes", Nano Res., 3(4), 271-280. https://doi.org/10.1007/s12274-010-1030-4.
  57. Yang, Y., Zhang, L. and Lim, C.W. (2011), "Wave propagation in double-walled carbon nanotubes on a novel analytically nonlocal Timoshenko-beam model", J. Sound Vib., 330(8),1704-1717. https://doi.org/10.1016/j.jsv.2010.10.028.
  58. Zarei, H., Fallah, M., Minak, G., Bisadi, H. and Daneshmehr, A. (2016), "Low velocity impact analysis of Fiber Metal Laminates (FMLs) in thermal environments with various boundary conditions". Compos. Struct., 149, 170-183. https://doi.org/10.1016/j.compstruct.2016.04.036.
  59. Zeighampour, H., Beni, Y.T. and Karimipour, I. (2017), "Wave propagation in double-walled carbon nanotube conveying fluid considering slip boundary condition and shell model based on nonlocal strain gradient theory", Microfluid. Nanofluidics, 21(5), 85. https://doi.org/10.1007/s10404-017-1918-3.
  60. Zhu, X. and Li, L. (2017a), "Closed form solution for a nonlocal strain gradient rod in tension", Int. J. Eng. Sci., 119, 16-28. https://doi.org/10.1016/j.ijengsci.2017.06.019.
  61. Zhu, X. and Li, L. (2017b), "On longitudinal dynamics of nanorods", Int. J. Eng. Sci., 120, 129-145. https://doi.org/10.1016/j.ijengsci.2017.08.003.