과제정보
This research was supported by a grant (NRF-2020R1A4A2002855) from NRF (National Research Foundation of Korea) funded by MEST (Ministry of Education and Science Technology) of Korean government.
참고문헌
- Banh T.T. and Lee D. (2018), "Multi-material topology optimization design for continuum structures with crack patterns", Compos. Struct., 186, 193-209. https://doi.org/10.1016/j.compstruct.2017.11.088.
- Banh T.T., Luu G.N. and Lee D.K. (2021), "A non-homogeneous multi-material topology optimization approach for functionally graded structures with cracks", Compos. Struct., 273, 114230. https://doi.org/10.1016/j.compstruct.2021.114230.
- Banh T.T., Nguyen Q.X., Herrmann M., Filippou F.C. and Lee D. (2020), "Multi-phase material topology optimization of Mindlin-Reissner plate with nonlinear variable thickness and Winkler foundation", Steel Compos. Struct., 35, 129-145. http://doi.org/10.12989/scs.2020.35.1.129.
- Bendsoe, M. and Kikuchi, N. (1988), "Generating optimal topologies in structural design using a homogenization method", Comput. Method. Appl. M., 17, 197-224. https://doi.org/10.1016/0045-7825(88)90086-2.
- Bendsoe M. and Sigmund O. (2004), Topology optimization: Theory, Methods, and Applications, Springer-Verlag Berlin Heidelberg
- Bouguenina O., Belakhdar K., Tounsi A. and Bedia E.A.A. (2015), "Numerical analysis of FGM plates with variable thickness subjected to thermal buckling", Steel Compos. Struct., 19, 679-695. http://doi.org/10.12989/scs.2015.19.3.679
- Braess, D. and Hackbusch, W. (1983), "A new convergence proof for the multigrid method including the V-cycle", SIAM J. Numer. Anal., 20(5), 967-975. https://doi.org/10.1137/0720066.
- Brandt, A. (1973), "Multi-level adaptive technique (MLAT) for fast numerical solution to boundary value problems", Proceedings of the 3rd International Conference on Numerical Methods in Fluid Mechanics, 18, 82-89. https://doi.org/10.1007/BFb0118663.
- Brandt, A. (1977), "Multi-level adaptive solutions to boundary-value problems", Math. Comput., 31(138), 333-390. https://doi.org/10.2307/2006422.
- Delale, F. and Erdogan, F. (1983), "The crack problem for a nonhomogeneous plane", J. Appl. Mech., 50(3), 609-614. https://doi.org/10.1115/1.3167098.
- Erdogan, F. and Wu, B.H. (1997), "The surface crack problem for a plate with functionally graded properties", J. Appl. Mech., 64(3), 449-456. https://doi.org/10.1115/1.2788914.
- Fedorenko, R. (1962), "A relaxation method for solving elliptic difference equations", Comput. Math. Math. Phys., 1(4), 1092-1096. https://doi.org/10.1016/0041-5553(62)90031-9.
- Fedorenko, R. (1964), "The speed of convergence of one iterative process", Comput. Math. Math. Phys., 4(3), 227-235. https://doi.org/10.1016/0041-5553(64)90253-8.
- Ghabraie, K. (2012), "Applications of topology optimization techniques in seismic design of structure", Structural Seismic Design Optimization and Earthquake Engineering: Formulations and Applications, 10, 232-268. 10.4018/978-1-4666-1640-0.ch010.
- Gu, P. and Asaro, R.J. (1997), "Crack deflection in functionally graded materials", Int. J. Solid.Struct., 34(24), 3085-3098. https://doi.org/10.1016/S0020-7683(96)00175-8.
- Hackbusch, W. (1985), Multi-grid methods and applications, Springer Series in Computational Mathematics, Springer-Verlag Berlin Heidelberg.
- Hackbusch, W. (1976), "Ein iteratives verfahren zur schnellen auflosung elliptischer randwertprobleme", Tech. Rep., 76(12).
- Hackbusch, W. (1981), "On the convergence of multi-grid iterations", Beitrage zur Numer. Math., 9, 213-239. https://doi.org/10.1007/978-3-662-02427-0_7
- Hestenes, M.R. and Stiefel, E. (1952), "Methods of conjugate gradients for solving linear systems", J. Res. National Bureau Standards, 49, 409-435. https://doi.org/10.6028/jres.049.044.
- Kim, J. and Paulino, G.H. (2002), "Isoparametric graded finite elements for non-homogeneous isotropic and orthotropic materials", J. Appl. Mech., 69, 502-514. https://doi.org/10.1115/1.1467094.
- Konda, N. and Erdogan, F. (1994), "The mixed mode crack problem in a non-homogeneous elastic medium", Eng. Fract. Mech., 47(4), 533-545. https://doi.org/10.1016/0013-7944(94)90253-4.
- Li, H., Xiao, M., Zhang, Y. and Gao, L. (2020), "Robust topology optimization of thermoelastic metamaterials considering hybrid uncertainties of material property", Compos. Struct., 248, 112477. https://doi.org/10.1016/j.compstruct.2020.112477.
- Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A.M.S. and Kazemi, M. (2017), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25, 415-426. http://dx.doi.org/10.12989/scs.2017.25.4.415.
- Paulino, G., Sutradhar, A. and Gray, L. (2002), "Boundary element methods for functionally graded materials", Bound. Elem., 34, 10. https://doi.org/10.2495/BT030141.
- Paulino, G.H. and Silva, E.C.N. (2005), "Design of functionally graded structures using topology optimization", Mater. Sci. Forum, 435-440.
- Sigmund, O. (1997), "On the design of compliant mechanisms using topology optimization", Mech. Struct. Machines, 25, 493-524. https://doi.org/10.1080/08905459708945415.
- Silva, E.C.N. and Paulino, G.H. (2004), "Topology optimization applied to the design of functionally graded material (FGM) structures", Proceedings of 21st international congress of theoretical and applied mechanics (ICTAM), 15-21 August 2004, Warsaw.
- Silva G.A., Beack A.T. and Sigmund Q. (2020), "Topology optimization of compliant mechanisms considering stress constraints, manufacturing uncertainty and geometric nonlinearity", Comput. Method. Appl. M., 365, 112872. https://doi.org/10.1016/j.cma.2020.112972.
- Tavakoli, R. and Mohseni, S.M. (2014), "Alternating active-phase algorithm for multimaterial topology optimization problems: A 115-line MATLAB implementation", Struct. Multidiscip. O., 49, 621-642. https://doi.org/10.1007/s00158-013-0999-1.
- Zhou, S. and Wang, M.Y. (2006), "Multimaterial structural topology optimization with a generalized Cahn-Hilliard model of multi-phase transition", Tructural Multidiscip. O., 33, 89-111. https://doi.org/10.1007/s00158-006-0035-9.