Comparison Analysis of Foot Pressure Characteristics during Walking in Stroke and Normal Elderly

뇌졸중 고령자와 정상인의 보행 시 족압 변화 및 비교 분석

  • 정남교 (고려대학교 전기전자공학부) ;
  • 박세진 (한국표준과학연구원 안전융합사업팀) ;
  • 권순현 (한국전자통신연구원 KSB 융합시스템연구실) ;
  • 전종암 (한국전자통신연구원 KSB 융합시스템연구실) ;
  • 유재학 (한국전자통신연구원 KSB 융합시스템연구실)
  • Received : 2021.09.02
  • Accepted : 2021.09.27
  • Published : 2021.09.30

Abstract

Stroke disease is one of the leading causes of death worldwide, and in particular, it is the most important causative disease that causes disability in the elderly. Since stroke disease often causes death or serious disability, active primary prevention and early detection of prognostic symptoms are very important. In particular, it is necessary to detect and accurately predict stroke prognostic symptoms in daily life and prompt diagnosis and treatment by medical staff. In recent studies, image analysis such as computed tomography (CT) or magnetic resonance imaging (MRI) is mostly used as a methodology for predicting prognostic symptoms in stroke patients. However, this approach has limitations in terms of long test time and high cost. In this paper, we experimented with clinical data on how stroke disease affects foot pressure in elderly in walking. Experiments have shown that there is a significant difference in * p < .05 in 12 cells between the stroke elderly and the normal elderly during walking. As a result, it is significant that we found a significant difference in the gait patterns in daily life of the stroke elderly and the normal elderly.

뇌졸중 질환은 전세계적으로 가장 중요한 사망원인 중 하나이며, 특히 고령자에게 장애의 원인이 되는 가장 중요한 질환이다. 뇌졸중 질환이 발생하면 사망 또는 심각한 장애를 유발하기 때문에, 적극적인 일차 예방과 전조증상의 빠른 발견이 매우 중요하다. 특히, 일상생활에서의 뇌졸중 전조증상 발병을 감지 및 정확히 예측하여 전문가의 신속한 진단을 유도할 수 있어야 한다. 최근까지의 연구에서는 뇌졸중 환자의 전조증상을 예측하는 방법론으로 CT(Computed Tomography)나 MRI(Magnetic Resonance Imaging)와 같은 영상 분석이 대부분이었으나, 이러한 접근에는 오랜 검사 시간과 높은 검사 비용 등에 대한 한계점을 가지고 있다. 본 논문에서는 고령자의 뇌졸중 질환 발병이 보행 시 족압(Foot Pressure)에 어떤 영향을 미치는지 임상 데이터를 이용해 실험하였다. 실험 결과, 보행 중에 뇌졸중 고령자와 일반 고령자 간에 12개의 셀에서 * p < .05 인 유의미한 차가 있음을 분석 및 검증하였다. 결과적으로 고령의 뇌졸중 환자와 일반 고령자의 일상생활의 보행 패턴에 유의미한 차이를 발견했다는 것에 그 의미가 크다고 할 수 있다.

Keywords

Acknowledgement

이 논문은 2015년 정부(미래창조과학부)의 재원으로 국가과학기술연구회 융합연구단사업(No. CRC-15-05-ETRI)의 지원을 받아 수행된 연구임.

References

  1. J. Yu, S. Park, S.H. Kwon, C.M.B. Ho, C.S. Pyo, H. Lee, "AI-based stroke disease prediction system using real-time electromyography signals," Applied Sciences, Vol. 10, No. 19, pp. 1-19, 2020.
  2. J. Yu, S. Park, H. Lee, C.S. Pyo, Y.S. Lee, "An elderly health monitoring system using machine learning and In-depth analysis techniques on the NIH stroke scale," Mathematics, Vol. 8, No. 7, pp. 1-16, 2020.
  3. World Health Organization. The top 10 causes of death. Available: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
  4. J.S. Chang, S.Y. Lee, M.H. Lee, Y.W. Choi, H.M. Lee, H.J. Oh, "The Correlations between gait speed and muscle activation or foot pressure in stroke patients," The Journal Korean Society of Physical Therapy, Vol. 21, No. 3, pp. 47-52, 2009.
  5. J.H. Jeong, Y.D. Kim, E.J. Kim, S.H. Lee, "The effects of treadmill according to walking direction on the affected side lower limb muscle activity and walking characteristic in stroke patients," Journal of Korean Society for Neurotherapy, Vol. 20, No. 2, pp. 7-15, 2016.
  6. Y.S. Kim, "Muscle activation patterns of stair gait in hemiparetic patients using surface electromyography," Journal of Adapted Physical Activity & Exercise, Vol. 14, No. 1, pp. 1-15, 2006.
  7. T. Melai, T.H. IJzerman, N.C. Schaper, T.L.H. de Lange, P.J.B. Willemsb, K. Meijerb, A.G. Lieversed, H.H.C.M. Savelbergb, "Calculation of plantar pressure time integral, an alternative approach," Gait & Posture, Vol. 34, pp. 379-383, 2011. https://doi.org/10.1016/j.gaitpost.2011.06.005
  8. K.J. Nolan, M. Yarossi, P. Mclaughlin, "Changes in center of pressure displacement with the use of a foot drop stimulator in individuals with stroke," Clinical Biomechanics, Vol. 30, No. 7, pp. 755-761, 2015. https://doi.org/10.1016/j.clinbiomech.2015.03.016
  9. Y. Choi, S.J. Park, J.J. Jun, C.S. Pyo, K.H. Cho, H.S. Lee, J. Yu, "Deep learning-based stroke disease prediction system using real-time bio signals," Sensors, Vol. 21, No. 13, pp. 1-17, 2021. https://doi.org/10.1109/JSEN.2020.3039123
  10. Dynafoot, Techno Concept, https://technoconcept.com/
  11. S. Kimmeskamp, E.M. Hennig, "Heel to toe motion characteristics in Parkinson patients during free walking," Clinical Biomechanics, Vol. 16, No. 9, pp. 806-812, 2001. https://doi.org/10.1016/S0268-0033(01)00069-9