Acknowledgement
National Natural Science Foundation of China (NO.51774173. NO.51474045)
References
- Adamowski, J.F. (2008), "Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross wavelet analysis", J. Hydro., 353(3-4), 247-266. https://doi.org/10.1016/j.jhydrol.2008.02.013.
- Ahmed, H.U., Mohammed, A.S., Mohammed, A.A. and Faraj, R.H. (2021), "Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes", Plos One, 16(6), e0253006. https://doi.org/10.1371/journal.pone.0253006.
- Armaghani, D.J., Mirzaei, F., Shariati, M., Trung, N.T., Shariati, M. and Trnavac, D. (2020), "Hybrid ANN-based techniques in predicting cohesion of sandy-soil combined with fiber", Geomech. Eng., 20(3), 191-205. https://doi.org/10.12989/gae.2020.20.3.191.
- Atici, U. (2011), "Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network", Exp. Syst. Appl., 38(8), 9609-9618. https://doi.org/10.1016/j.eswa.2011.01.156.
- Azimi-Pour, M., Eskandari-Naddaf, H. and Pakzad, A. (2020), "Linear and non-linear SVM prediction for fresh properties and compressive strength of high-volume fly ash self-compacting concrete", Constr. Build. Mater., 230, 117021. https://doi.org/10.1016/j.conbuildmat.2019.117021.
- Babu, K.G. and Rao, G.S.N. (1994), "Early strength behavior of fly ash concretes", Cement Concrete Res., 24(2), 277-284. https://doi.org/10.1016/0008-8846(94)90053-1
- Behnood, A., Behnood, V., Gharehveran, M.M. and Alyamac, K.E. (2017), "Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm", Constr. Build. Mater., 142, 199-207. https://doi.org/10.1016/j.conbuildmat.2017.03.061.
- Benhelal, E., Zahedi, G., Shamsaei, E. and Bahadori, A. (2013), "Global strategies and potentials to curb CO2 emissions in cement industry", J. Clean. Prod., 51, 142-161. https://doi.org/10.1016/j.jclepro.2012.10.049.
- BS EN 12390-3 (2019), Testing Hardened Concrete, Compressive Strength of Test Specimens.
- BS EN 12390-6 (2009), Testing Hardened Concrete, Tensile Splitting Strength of Test Specimens.
- Cabrera, J.G. and Claisse, P.A. (1990), "Measurement of chloride penetration into silica fume concrete", Cement Concrete Compos., 12(3), 157-161. https://doi.org/10.1016/0958-9465(90)90016-Q.
- Chou, J.H. and Ghaboussi, J. (2001), "Genetic algorithm in structural damage detection", Comput. Struct., 79(14), 1335-1353. https://doi.org/10.1016/S0045-7949(01)00027-X.
- Chou, J.S. and Pham, A.D. (2013), "Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength", Constr. Build. Mater., 49, 554-563. https://doi.org/10.1016/j.conbuildmat.2013.08.078.
- Craven, P. and Wahba, G. (1978), "Smoothing noisy data with spline functions", Numerische Mathematik, 31(4), 377-403. https://doi.org/10.1007/BF01404567.
- Detwiler, R.J., Bhatty, J.I. and Battacharja, S. (1996), Supplementary Cementing Materials for Use in Blended Cements. http://worldcat.org/isbn/0893121428.
- Dutta, S., Samui, P. and Kim, D. (2018), "Comparison of machine learning techniques to predict compressive strength of concrete", Comput. Concrete, 21(4), 463-470. https://doi.org/10.12989/cac.2018.21.4.463.
- Esmaeili-choobar, N., Esmaeili-falak, M., Roohi-hir, M. amd Keshtzad, S. (2013), "Evaluation of collapsibility potential at Talesh, Iran", EJGE, 2561-2573.
- Esmaeili-Falak, M. (2017), "Effect of system's geometry on the stability of frozen wall in excavation of saturated granular soils", Ph.D. Dissertation of Philosophy, University of Tabriz.
- Esmaeili-Falak, M., Katebi, H., Vadiati, M. and Adamowski, J. (2019), "Predicting triaxial compressive strength and Young's modulus of frozen sand using artificial intelligence methods", J. Cold Regions Eng., 33(3), 04019007. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000188.
- Esmaeili-Falak, M., Sarkhani Benemaran, R. and Seifi, R. (2020), "Improvement of the Mechanical and Durability Parameters of Construction Concrete of the Qotursuyi Spa", Concrete Res., 13(2), 119-134. https://doi.org/10.22124/JCR.2020.14518.1395.
- Faraj, R.H., Mohammed, A.A., Mohammed, A., Omer, K.M. and Ahmed, H.U. (2021), "Systematic multiscale models to predict the compressive strength of self-compacting concretes modified with nanosilica at different curing ages," Eng. Comput., 1-24. https://doi.org/10.1007/s00366-021-01385-9.
- Felekoglu, B., Turkel, S. and Baradan, B. (2007), "Effect of water/cement ratio on the fresh and hardened properties of self-compacting concrete", Build. Environ., 42(4), 1795-1802. https://doi.org/10.1016/j.buildenv.2006.01.012.
- Friedman, J.H. (1991), "Multivariate adaptive regression splines", Annals Statist., 1-67.
- Hubertova, M. and Hela, R. (2007), "The effect of metakaolin and silica fume on the properties of lightweight self-consolidating concrete", Spec. Pub., 243, 35-48.
- Khademi, F., Akbari, M., Jamal, S.M. and Nikoo, M. (2017), "Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete", Front. Struct. Civil Eng., 11(1), 90-99. https://doi.org/10.1007/s11709-016-0363-9.
- Kjellsen, K.O., Wallevik, O.H. and Hallgren, M. (1999), "On the compressive strength development of high-performance concrete and paste-effect of silica fume", Mater. Struct., 32(1), 63. https://doi.org/10.1007/BF02480414.
- Lam, L., Wong, Y.L. and Poon, C.S. (1998), "Effect of fly ash and silica fume on compressive and fracture behaviors of concrete", Cement Concrete Res., 28(2), 271-283. https://doi.org/10.1016/S0008-8846(97)00269-X.
- Liu, F., Ding, W. and Qiao, Y. (2019), "Experimental investigation on the flexural behavior of hybrid steel-PVA fiber reinforced concrete containing fly ash and slag powder", Constr. Build. Mater., 228, 116706. https://doi.org/10.1016/j.conbuildmat.2020.118000.
- Mazloom, M. and Yoosefi, M.M. (2013), "Predicting the indirect tensile strength of self-compacting concrete using artificial neural networks", Comput. Concrete, 12(3), 285-301. https://doi.org/10.12989/cac.2013.12.3.285.
- Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014), "Grey wolf optimizer", Adv. Eng. Softw., 69, 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007.
- Mohamed, O.A., Syed, Z.I. and Najm, O.F. (2016), "Splitting tensile strength of sustainable self-consolidating concrete", Procedia Eng., 145, 1218-1225. http://doi.org/10.1016/j.proeng.2016.04.157.
- Mousavi, S.M., Aminian, P., Gandomi, A.H., Alavi, A.H. and Bolandi, H. (2012), "A new predictive model for compressive strength of HPC using gene expression programming", Adv. Eng. Softw., 45(1), 105-114. https://doi.org/10.1016/j.advengsoft.2011.09.014.
- Muro, C., Escobedo, R., Spector, L. and Coppinger, R.P. (2011), "Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations", Behav. Proc., 88(3), 192-197. https://doi.org/10.1016/j.beproc.2011.09.006.
- Nochaiya, T., Wongkeo, W. and Chaipanich, A. (2010), "Utilization of fly ash with silica fume and properties of Portland cement-fly ash-silica fume concrete", Fuel, 89(3), 768-774. https://doi.org/10.1016/j.fuel.2009.10.003.
- Pala, M., Ozbay, E., Oztas, A. and Yuce, M.I. (2007), "Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks", Constr. Build. Mater., 21(2), 384-394. https://doi.org/10.1016/j.conbuildmat.2005.08.009.
- Patel, P.J. (2014), "Health analysis of high performance concrete by using waste material", Ph.D. Dissertation of Philosophy, Ganpat University.
- Pham, B.T., Qi, C., Ho, L.S., Nguyen-Thoi, T., Al-Ansari, N., Nguyen, M.D. and Prakash, I. (2020), "A novel hybrid soft computing model using random forest and particle swarm optimization for estimation of undrained shear strength of soil", Sustain., 12(6), 2218. https://doi.org/10.3390/su12062218.
- Qiu, M., Ming, Z., Li, J., Gai, K. and Zong, Z. (2015), "Phase-change memory optimization for green cloud with genetic algorithm", IEEE Transac. Comput., 64(12), 3528-3540. https://doi.org/10.1109/TC.2015.2409857.
- Sarkhani Benemaran, R., Esmaeili-Falak, M. and Katebi, H. (2020), "Physical and numerical modelling of pile-stabilised saturated layered slopes", Proc. Inst. Civil Eng. Geotech. Eng., 1-16. https://doi.org/10.1680/jgeen.20.00152.
- Sarkhani, B.R. and Esmaeili-falak M. (2020), "Optimization of cost and mechanical properties of concrete with admixtures using MARS and PSO", Comput. Concrete, 26(4), 309-316. https://doi.org/10.12989/cac.2020.26.4.000.
- Shariati, M., Mafipour, M.S., Ghahremani, B., Azarhomayun, F., Ahmadi, M., Trung, N.T. and Shariati, A. (2020), "A novel hybrid extreme learning machine-grey wolf optimizer (ELM-GWO) model to predict compressive strength of concrete with partial replacements for cement", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01081-0.
- Shariati, M., Mafipour, M.S., Mehrabi, P., Bahadori, A., Zandi, Y., Salih, M.N., Nguyen, H., Dou, J., Song, X. and Poi-Ngian, S. (2019), "Application of a hybrid artificial neural network-particle swarm optimization (ANN-PSO) model in behavior prediction of channel shear connectors embedded in normal and high-strength concrete", Appl. Sci., 9(24), 5534. https://doi.org/10.3390/app9245534.
- Siddique, R. (2004), "Performance characteristics of high-volume Class F fly ash concrete", Cement Concrete Res., 34(3), 487-493. https://doi.org/10.1016/j.cemconres.2003.09.002.
- Topcu, I.B. and Saridemir, M. (2008), "Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 41(3), 305-311. https://doi.org/10.1016/j.commatsci.2007.04.009.
- Toutanji, H., Delatte, N., Aggoun, S., Duval, R. and Danson, A. (2004), "Effect of supplementary cementitious materials on the compressive strength and durability of short-term cured concrete", Cement Concrete Res., 34(2), 311-319. https://doi.org/10.1016/j.cemconres.2003.08.017.
- Turk, K., Turgut, P., Karatas, M. and Benli, A. (2010), "Mechanical properties of selfcompacting concrete with silica fume/fly ash", 9th Int. Cong. Adv. Civil Eng., 27-30.
- Wang, C.C., Chen, T.T., Wang, H.Y. and Huang, C. (2014), "A predictive model for compressive strength of waste LCD glass concrete by nonlinear-multivariate regression", Comput. Concrete, 13(4), 531-545. http://doi.org/10.12989/cac.2014.13.4.531.
- Yaprak, H., Karaci, A. and Demir, I. (2013), "Prediction of the effect of varying cure conditions and w/c ratio on the compressive strength of concrete using artificial neural networks", Neur. Comput. Appl., 22(1), 133-141. https://doi.org/10.1007/s00521-011-0671-x.
- Yeh, I.C. (1998), "Modeling of strength of high-performance concrete using artificial neural networks", Cement Concrete Res., 28(12), 1797-1808. https://doi.org/10.1016/S0008-8846(98)00165-3.
- Yu, Z., Shi, X., Zhou, J., Rao, D., Chen, X., Dong, W. and Ipangelwa, T. (2019), "Feasibility of the indirect determination of blast-induced rock movement based on three new hybrid intelligent models", Eng. Comput., 1-16. https://doi.org/10.1007/s00366-019-00868-0.
- Zain, M.F.M., Mahmud, H.B., Ilham, A. and Faizal, M. (2002), "Prediction of splitting tensile strength of high-performance concrete", Cement Concrete Res., 32(8), 1251-1258. https://doi.org/10.1016/S0008-8846(02)00768-8.
- Zelic, J., Rusic, D. and Krstulovic, R. (2004), "A mathematical model for prediction of compressive strength in cement-silica fume blends", Cement Concrete Res., 34(12), 2319-2328. https://doi.org/10.1016/j.cemconres.2004.04.015.
- Zhou, J., Enming, L., Haixia, W., Chuanqi, L., Qiuqiu, Q. and Armaghani, D.J. (2019), "Random forests and cubist algorithms for predicting shear strengths of rockfill materials", Appl. Sci., 9(8), 1621. https://doi.org/10.3390/app9081621.