참고문헌
- ACI 544.4R (2018), Guide to design with fiber-reinforced concrete, American Concrete Institute; Farmington Hills, MI, USA.
- ASTM C33 (2008), Standard Specification for Concrete Aggregates, ASTM International; West Conshohocken, USA.
- ASTM C469 (2002), Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression, ASTM International, West Conshohocken, PA.
- ASTM C496 (2017), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International; West Conshohocken, PA.
- ASTM C579 (2018), Standard Test Methods for Compressive Strength of Chemical-Resistant Mortars, Grouts, Monolithic Surfacings and Polymer Concrete, ASTM International, West Conshohocken, PA.
- ASTM C580 (2018), Standard Test Method for Flexural Strength and Modulus of Elasticity of Chemical Resistant Mortars, Grouts, Monolithic Surfacings, and Polymer Concretes, ASTM International, West Conshohocken, PA.
- Barbuta, M. and Lepadatu, D. (2008), "Mechanical characteristics investigation of polymer concrete using mixture design of experiments and response surface method", J. Appl. Sci., 8(12), 2242-2249. https://doi.org/10.3923/jas.2008.2242.2249.
- Barbuta, M., Harja, M. and Baran, I. (2010), "Comparison of mechanical properties for polymer concrete with different types of filler", J. Mater. Civil Eng., 22(7), 696-701. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000069.
- Barbuta, M., Rujanu, M. and Nicuta, A. (2016), "Characterization of polymer concrete with different wastes additions", Proc. Tech., 22, 407-412. https://doi.org/10.1016/j.protcy.2016.01.069.
- Bedi, R., Chandra, R. and Singh, S.P. (2013), "Mechanical properties of polymer concrete", J. Compos., 948745. https://doi.org/10.1155/2013/948745.
- Bencardino, F., Rizzuti, L., Spadea, G. and Swamy, R.N. (2013), "Implications of test methodology on post-cracking and fracture behavior of steel fiber reinforced concrete", Compos. Part B Eng., 46, 31-38. https://doi.org/10.1016/j.compositesb.2012.10.016.
- Brockenbrough, T.W. and Patterson, D.N. (1982), "Fiber reinforced methacrylate polymer concrete", ACI J., 79(4), 322-325.
- Bulut, H.A. and Sahin, R. (2017), "A study on mechanical properties of polymer concrete containing electronic plastic waste", Compos. Struct., 178, 50-62. https://doi.org/10.1016/j.compstruct.2017.06.058.
- Caggiano, A., Cremona, M., Faella, C., Lima, C. and Martinelli, E. (2012), "Fracture behavior of concrete beams reinforced with mixed long/short steel fibers", Constr. Build. Mater., 37, 832-840. https://doi.org/10.1016/j.conbuildmat.2012.07.060.
- Campione, G. (2015), "Analytical prediction of load deflection curves of external steel fibers R/C beam-column joints under monotonic loading", Eng. Struct., 83, 86-98. https://doi.org/10.1016/j.engstruct.2014.10.047.
- Campione, G. and Mangiavillano, M.L. (2008), "Fibrous reinforced concrete beams in flexure: Experimental investigation, analytical modelling and design considerations", Eng. Struct., 30, 2970-2980. https://doi.org/10.1016/j.engstruct.2008.04.019.
- Cardoso, C., Camoes, A., Eires, R., Mota, A., Araujo, J., Castro, F. and Carvalho, J. (2018), "Using foundry slag of ferrous metals as fine aggregate for concrete", Resour. Conserv. Recyc., 138, 130-141. https://doi.org/10.1016/j.resconrec.2018.05.020.
- Chalioris, C.E. (2013), "Analytical approach for the evaluation of minimum fibre factor required for steel fibrous concrete beams under combined shear and flexure", Constr. Build. Mater., 43, 317-336. https://doi.org/10.1016/j.conbuildmat.2013.02.039.
- Chalioris, C.E. and Karayannis, C.G. (2009), "Effectiveness of the use of steel fibres on the torsional behaviour of flanged concrete beams", Cement Concrete Compos., 31(5), 331-341. https://doi.org/10.1016/j.cemconcomp.2009.02.007.
- Chalioris, C.E. and Liotoglou, F.A. (2015), "Tests and simplified behavioral model for steel fibrous concrete under compression", Adv. Civil Eng. Build. Mater. IV; Chang, S.-Y., Al Bahar, S.K., Husain, A.-A.M., Zhao, J., Eds, 195-199.
- Chalioris, C.E. and Panagiotopoulos, T.A. (2018), "Flexural analysis of steel fibre-reinforced concrete members", Comput. Concrete, 22(1), 11-25. https://doi.org/10.12989/cac.2018.22.1.011.
- Chalioris, C.E. and Sfiri, E.F. (2011), "Shear performance of steel fibrous concrete beams", Proc. Eng., 14, 2064-2068. https://doi.org/10.1016/j.proeng.2011.07.259.
- Chalioris, C.E., Kosmidou, P.M.K. and Karayannis, C.G. (2019), "Cyclic response of steel fiber reinforced concrete slender beams: an experimental study", Mater., 12(9), 1398. https://doi.org/10.3390/ma12091398.
- Doghmane, M., Hadjoub, F., Doghmane, A. and Hadjoub, Z. (2007), "Approaches for evaluating Young's and shear moduli in terms of a single SAW velocity via SAM technique", Mater. Lett., 61(3), 813-816. https://doi.org/10.1016/j.matlet.2006.05.080.
- Douba, A.E., Emiroglou, M., KandiL, U.F. and Taha, M.M.R. (2019), "Very ductile polymer concrete using carbon nanotubes", Constr. Build. Mater., 196, 468-477. https://doi.org/10.1016/j.conbuildmat.2018.11.021.
- Ferdous, W., Manalo, A., Aravinthan, T. and Van Erp, G. (2016), "Properties of epoxy polymer concrete matrix: effect of resinto-filler ratio and determination of optimal mix for composite railway sleepers", Constr. Build. Mater., 124, 287-300. https://doi.org/10.1016/j.conbuildmat.2016.07.111.
- Ferdous, W., Manalo, A., Wong, H.S., Abousnina, R., AlAjarmeh, O.S., Zhuge, Y. and Schubel, P. (2020), "Optimal design for epoxy polymer concrete based on mechanical properties and durability aspects", Constr. Build. Mater., 232, 117229. https://doi.org/10.1016/j.conbuildmat.2019.117229.
- Foray-Thevenin, G., Vigier, G., Vassoille, R. and Orange, G. (2006), "Characterization of cement paste by dynamic mechanical thermo-analysis. Part I: Operative conditions", Mater. Charact., 56(2), 129-137. https://doi.org/10.1016/j.matchar.2005.10.007.
- Fowler, D.W. (1999), "Polymers in concrete: a vision for the 21st century", Cement Concrete Compos., 21(5-6), 449-452. https://doi.org/10.1016/S0958-9465(99)00032-3.
- Garbacz, A. and Sokolowska, J.J. (2013), "Concrete-like polymer composites with fly ashes-Comparative study", Constr. Build. Mater., 38, 689-699. https://doi.org/10.1016/j.conbuildmat.2012.08.052.
- Gribniak, V., Kaklauskas, G., Kwan, A.K.H., Bacinskas, D. and Ulbinas, D. (2012), "Deriving stress-strain relationships for steel fibre concrete in tension from tests of beams with ordinary reinforcement", Eng. Struct., 42, 387-395. https://doi.org/10.1016/j.engstruct.2012.04.032.
- Gribniak, V., Ng, P.L., Tamulenas, V., Misiunaite, I., Norkus, A. and Sapalas, A. (2019), "Strengthening of fibre reinforced concrete elements: Synergy of the fibres and external sheet", Sustain., 11(16), 4456. https://doi.org/10.3390/su11164456.
- Gribniak, V., Tamulenas, V., Ng, P.L., Arnautov, A.K., Gudonis, E. and Misiunaite, I. (2017), "Mechanical behavior of steel fiber-reinforced concrete beams bonded with external carbon fiber sheets", Mater., 10(6), 666. https://doi.org/10.3390/ma10060666.
- Guerini, V., Conforti, A., Plizzari, G.A. and Kawashima, S. (2018), "Influence of steel and macro-synthetic fibers on concrete properties", Fibers, 6(3), 47. https://doi.org/10.3390/fib6030047.
- Gunasekaran, M. (2000), "Polymer concrete: a versatile, low-cost material for Asian electrical infrastructure systems", Proc. IEEE Int. Symp. Electr. Insulation, 356-361.
- Guo, Y., Xie, J., Zhao, J. and Zuo, K. (2019), "Utilization of unprocessed steel slag as fine aggregate in normal- and high-strength concrete", Constr. Build. Mater., 204, 41-49, https://doi.org/10.1016/j.conbuildmat.2019.01.178.
- Haidar, M., Ghorbel, E. and Toutanji, H. (2011), "Optimization of the formulation of micro-polymer concretes", Constr. Build. Mater., 25(4), 1632-1644. https://doi.org/10.1016/j.conbuildmat.2010.10.010.
- Hameed, A.M. and Hamza, M.T. (2019), "Characteristics of polymer concrete produced from wasted construction materials", Energy Proc., 157, 43-50. https://doi.org/10.1016/j.egypro.2018.11.162.
- Hashemi, M.J., Jamshidi, M. and Aghdam, J.H. (2017), "Investigating fracture mechanics and flexural properties of unsaturated polyester polymer concrete (UP-PC)", Constr. Build. Mater., 163, 767-775. https://doi.org/10.1016/j.conbuildmat.2017.12.115.
- Heidari-Rarani, M., Aliha, M.R.M., Shokrieh, M.M. and Ayatollahi, M.R. (2014), "Mechanical durability of an optimized polymer concrete under various thermal cyclic loadings-An experimental study", Constr. Build. Mater., 64, 308-315. https://doi.org/10.1016/j.conbuildmat.2014.04.031.
- Hong, S., Kim, H. and Park, S.K. (2016), "Optimal mix and freeze-thaw durability of polysulfide polymer concrete", Constr. Build. Mater., 127, 539-545. https://doi.org/10.1016/j.conbuildmat.2016.10.056.
- Jafari, K., Tabatabaeian, M., Joshaghani, A. and Ozbakkaloglu, T. (2018), "Optimizing the mixture design of polymer concrete: An experimental investigation", Constr. Build. Mater., 167, 185-196. https://doi.org/10.1016/j.conbuildmat.2018.01.191.
- Jin, N.J., Yeon, J., Seung, I. and Yeon, K.S. (2017), "Effects of curing temperature and hardener type on the mechanical properties of bisphenol F-type epoxy resin concrete", Constr. Build. Mater., 156, 933-943. https://doi.org/10.1016/j.conbuildmat.2017.09.053.
- Karayannis, C.G. (2000), "Nonlinear analysis and tests of steel-fiber concrete beams in torsion", Struct. Eng. Mech., 9(4), 323-338. https://doi.org/10.12989/sem.2000.9.4.323.
- Kazemi, M., Madandoust, R. and de Brito, J. (2019), "Compressive strength assessment of recycled aggregate concrete using Schmidt rebound hammer and core testing", Constr. Build. Mater., 224, 630-638. https://doi.org/10.1016/j.conbuildmat.2019.07.110.
- Khalid, N.H.A., Hussin, M.W., Mirza, J., Ariffin, N.F., Ismail, M.A., Lee, H.S., Mohamed, A. and Jaya, R.P. (2016), "Palm oil fuel ash as potential green micro-filler in polymer concrete", Constr. Build. Mater., 102, 950-960. https://doi.org/10.1016/j.conbuildmat.2015.11.038.
- Kim, K.S., Lee, D.H., Hwang, J.H. and Kuchma, D.A. (2012), "Shear behavior model for steel fiber-reinforced concrete members without transverse reinforcements", Compos. Part B Eng., 43(5), 2324-2334. https://doi.org/10.1016/j.compositesb.2011.11.064.
- Kou, S.C. and Poon, C.S. (2013), "A novel polymer concrete made with recycled glass aggregates, fly ash and metakaolin", Constr. Build. Mater., 41, 146-151. https://doi.org/10.1016/j.conbuildmat.2012.11.083.
- Kytinou, V.K., Chalioris, C.E. and Karayannis, C.G. (2020), "Analysis of residual flexural stiffness of steel fiber-reinforced concrete beams with steel reinforcement", Mater., 13(12), 2698. https://doi.org/10.3390/ma13122698.
- Kytinou, V.K., Chalioris, C.E., Karayannis, C.G. and Elenas, A. (2020), "Effect of steel fibers on the hysteretic performance of concrete beams with steel reinforcement-Tests and analysis", Mater., 13(13), 2923. https://doi.org/10.3390/ma13132923.
- Lam, M.N.T., Le, D.H. and Jaritngam, S. (2018), "Compressive strength and durability properties of roller-compacted concrete pavement containing electric arc furnace slag aggregate and fly ash", Constr. Build. Mater., 191, 912-922. https://doi.org/10.1016/j.conbuildmat.2018.10.080.
- Lantsoght, E.O.L. (2019), "How do steel fibers improve the shear capacity of reinforced concrete beams without stirrups?", Compos. Part B Eng., 175, 107079. https://doi.org/10.1016/j.compositesb.2019.107079.
- Lee, J.Y., Shin, H.O., Yoo, D.Y. and Yoon, Y.S. (2018), "Structural response of steel-fiber-reinforced concrete beams under various loading rates", Eng. Struct., 156, 271-283. https://doi.org/10.1016/j.engstruct.2017.11.052.
- Lee, S.C., Oh, J.H. and Cho, J.Y. (2015), "Compressive behavior of fiber-reinforced concrete with end-hooked steel fibers", Mater., 8(4), 1442-1458. https://doi.org/10.3390/ma8041442.
- Lokuge, W.P. and Aravinthan, T. (2013), "Mechanical properties of polymer concrete with different types of resin", Proceedings of the 22nd Australasian Conference on the Mechanics of Structures and Materials, Sydney, Australia.
- Mahdi, F., Abbas, H. and Ali, A. (2013), "Flexural, shear and bond strength of polymer concrete utilizing recycled resin obtained from post consumer PET bottles", Constr. Build. Mater., 44, 798-811. https://doi.org/10.1016/j.conbuildmat.2013.03.081.
- Maksimov, R.D., Jirgens, L., Jansons, J. and Plume, E. (1999), "Mechanical properties of polyester polymer-concrete", Mech. Compos. Mater., 35(2), 99-110. https://doi.org/10.1007/BF02257239.
- Mani, P., Gupta, A.K. and Krishnamoorthy, S. (1987), "Comparative study of epoxy and polyester resin-based polymer concretes", Int. J. Adhesion Adhesiv., 7(3), 157-163. https://doi.org/10.1016/0143-7496(87)90071-6.
- Martinez-Barrera, G., Menchaca-Campos, C. and Gencel, O. (2013), "Polyester polymer concrete: Effect of the marble particle sizes and high gamma radiation doses", Constr. Build. Mater., 41, 204-208. https://doi.org/10.1016/j.conbuildmat.2012.12.009.
- Mohammed, A.A. and Rahim, A.A.F. (2020), "Experimental behavior and analysis of high strength concrete beams reinforced with PET waste fiber", Constr. Build. Mater., 244, 118350. https://doi.org/10.1016/j.conbuildmat.2020.118350.
- Murthy, A.R., Aravindan, M. and Ganesh, P. (2018), "Prediction of flexural behaviour of RC beams strengthened with ultrahigh performance fiber reinforced concrete", Struct. Eng. Mech., 65(3), 315-325. https://doi.org/10.12989/sem.2018.65.3.315.
- Murthy, A.R., Karihaloo, B.L., Rani, P.V. and Priya, D.S. (2018), "Fatigue behaviour of damaged RC beams strengthened with ultrahigh performance fiber reinforced concrete", Int. J. Fatigue, 116, 659-668. https://doi.org/10.1016/j.ijfatigue.2018.06.046.
- Naaman, A.E. (2003), "Engineered steel fibers with optimal properties for reinforcement of cement composites", J. Adv. Concrete Tech., 1(3), 241-252. https://doi.org/10.3151/jact.1.241.
- Nataraja, M.C., Dhang, N. and Gupta, A.P. (1999), "Stress-strain curves for steel fiber reinforced concrete under compression", Cement Concrete Compos., 21(5-6), 383-390. https://doi.org/10.1016/S0958-9465(99)00021-9.
- Niaki, M.H., Fereidoon, A. and Ahangari, M.G. (2018), "Experimental study on the mechanical and thermal properties of basalt fiber and nanoclay reinforced polymer concrete", Compos. Struct., 191, 231-238. https://doi.org/10.1016/j.compstruct.2018.02.063.
- Nogueira, P., Ramirez, C., Torres, A., Abad, M.J., Cano, J., Lopez, J., Lopez-Bueno, I. and Barral, L. (2001), "Effect of water sorption on the structure and mechanical properties of an epoxy resin system", Appl. Polym. Sci., 80(1), 71-80. https://doi.org/10.1002/1097-4628(20010404)80:1<71::AID-APP1077>3.0.CO;2-H.
- Noumowe, A. (2005), "Mechanical properties and microstructure of high strength concrete containing polypropylene fibers exposed to temperatures up to 200 C", Cement Concrete Res., 35(11), 2192-8. https://doi.org/10.1016/j.cemconres.2005.03.007.
- Ohama, Y. (1973), "Mix proportions and properties of polyester resin concretes", Am. Concrete Inst., 40, 283-294.
- Okada, K., Koyanagi, W. and Yonezawa, T. (1975) "Thermo dependent properties of polyester resin concrete", Proceedings of the 5th International Congress on Polymer Concrete, Lancaster, May.
- Olivito, R.S. and Zuccarello, F.A. (2010), "An experimental study on the tensile strength of steel fiber reinforced concrete", Compos. Part B Eng., 41(3), 246-255. https://doi.org/10.1016/j.compositesb.2009.12.003.
- Pal, S., Tiwari, S., Katyal, K. and Singh, A. (2019), "Effect of polymer modification on structural and mechanical properties of concrete using epoxy emulsion as the modifier", Innov. Mater. Sci. Eng., 1-10. https://doi.org/10.1007/978-981-13-2944-9_1.
- Pratap, A. (2002), "Vinyl ester and acrylic based polymer concrete for electrical applications", Prog. Cryst. Growth Charact. Mater., 45(1-2), 117-125. https://doi.org/10.1016/S0960-8974(02)00036-0.
- Rahmani, E., Dehestani, M., Beygi, M.H.A., Allahyari, H. and Nikbin, I.M. (2013), "On the mechanical properties of concrete containing waste PET particles", Constr. Build. Mater., 47, 1302-1308. https://doi.org/10.1016/j.conbuildmat.2013.06.041.
- Rebeiz, K.S. (1996), "Precast use of polymer concrete using unsaturated polyester resin based on recycled PET waste", Constr. Build. Mater., 10, 215-220. https://doi.org/10.1016/0950-0618(95)00088-7.
- Reis, J.M.L. (2005), "Mechanical characterization of fiber reinforced polymer concrete", Mater. Res., 8(3), 357-360. https://doi.org/10.1590/S1516-14392005000300023.
- Reis, J.M.L. (2006), "Fracture and flexural characterization of natural fiber-reinforced polymer concrete", Constr. Build. Mater., 20, 673-678. https://doi.org/10.1016/j.conbuildmat.2005.02.008.
- Reis, J.M.L. (2009), "Effect of textile waste on the mechanical properties of polymer concrete", Mater. Res., 12(1), 63-67. https://doi.org/10.1590/S1516-14392009000100007.
- Reis, J.M.L. and Ferreira, A.J.M. (2004), "Assessment of fracture properties of epoxy polymer concrete reinforced with short carbon and glass fibers", Constr. Build. Mater., 18, 523-528. https://doi.org/10.1016/j.conbuildmat.2004.04.010.
- Ribeiro, M.C.S., Fiuza, A., Castro, A.C.M., Silva, F.G., Dinis, M.L., Meixedo, J.P. and Alvim, M.R. (2013), "Mix design process of polyester polymer mortars modified with recycled GFRP waste materials", Compos. Struct., 105, 300-310. https://doi.org/10.1016/j.compstruct.2013.05.023.
- Ribeiro, M.C.S., Meira-Castro, A.C., Silva, F.G., Santos, J., Meixedo, J.P., Fiuza, A., Dinis, M.L. and Alvim, M.R. (2015), "Re-use assessment of thermoset composite wastes as aggregate and filler replacement for concrete-polymer composite materials: A case study regarding GFRP pultrusion wastes", Resour. Conserv. Recyc., 104, 417-426. https://doi.org/10.1016/j.resconrec.2013.10.001.
- Saribiyik, M., Piskin, A. and Saribiyik, A. (2013), "The effects of waste glass powder usage on polymer concrete properties", Constr. Build. Mater., 47, 840-844. https://doi.org/10.1016/j.conbuildmat.2013.05.023.
- Shokrieh, M.M., Rezvani, S. and Mosalmani, R. (2017), "Mechanical behavior of polyester polymer concrete under low strain rate loading conditions", Polym. Test., 63, 596-604. https://doi.org/10.1016/j.polymertesting.2017.09.015.
- Simoes, T., Octavio, C., Valenca, J., Costa, H., Dias-da-Costa, D. and Julio, E. (2017), "Influence of concrete strength and steel fiber geometry on the fiber/matrix interface", Compos. Part B Eng., 122, 156-164. https://doi.org/10.1016/j.compositesb.2017.04.010.
- Sosoi, G., Barbuta, M., Serbanoiu, A.A., Babor, D. and Burlacu, A. (2018), "Wastes as aggregate substitution in polymer concrete", Proc. Manuf., 22, 347-351. https://doi.org/10.1016/j.promfg.2018.03.052.
- Sun, J., Feng, J. and Chen, Z. (2019), "Effect of ferronickel slag as fine aggregate on properties of concrete", Constr. Build. Mater., 206, 201-209. https://doi.org/10.1016/j.conbuildmat.2019.01.187.
- Torres, J.A. and Lantsoght, E.O.L. (2019), "Influence of fiber content on shear capacity of steel fiber-reinforced concrete beams", Fiber., 7(12), 102. https://doi.org/10.3390/fib7120102.
- Toufigh, V., Hosseinali, M. and Shirkhorshidi, S.M. (2016), "Experimental study and constitutive modeling of polymer concrete's behavior in compression", Constr. Build. Mater., 112, 183-190. https://doi.org/10.1016/j.conbuildmat.2016.02.100.
- Tsonos, A.D.G. (2009), "Steel fiber high-strength reinforced concrete: A new solution for earthquake strengthening of old R/C structures", WIT Tran. Built Environ., 104, 153-164. https://doi.org/10.2495/ERES090141
- Tsonos, A.D.G. (2009), "Ultra-high-performance fiber reinforced concrete: An innovative solution for strengthening old R/C structures and for improving the FRP strengthening method", WIT Tran. Eng. Sci., 64, 273-284. https://doi.org/10.2495/MC090261
- Vipulanandan, C. and Paul, E. (1993), "Characterization of polyester polymer and polymer concrete", J. Mater. Civil Eng., ASCE, 5(1), 62-82. https://doi.org/10.1061/(ASCE)0899-1561(1993)5:1(62).
- Wang, J., Dai, Q., Guo, S. and Si, R. (2019), "Mechanical and durability performance evaluation of crumb rubber-modified epoxy polymer concrete overlays", Constr. Build. Mater., 203, 469-480. https://doi.org/10.1016/j.conbuildmat. 2019.01.085.
- Wang, M. and Wan, W. (2019), "A new empirical formula for evaluating uniaxial compressive strength using the Schmidt hammer test", Int. J. Rock Mech. Min. Sci., 123, 104094. https://doi.org/10.1016/j.ijrmms.2019.104094 104094.
- Xu, P. and Yu, Y.H. (2008), "Research on steel-fiber polymer concrete machine tool structure", J. Coal Sci. Eng., 14(4), 689-692. https://doi.org/10.1007/s12404-008-0444-z.
- Yoo, D.Y., Banthia, N., Lee, J.Y. and Yoon, Y.S. (2018), "Effect of fiber geometric property on rate dependent flexural behavior of ultra-high-performance cementitious composite", Cement Concrete Compos., 86, 57-71. https://doi.org/10.1016/j.cemconcomp.2017.11.002.
- Zhao, J., Liang, J., Chu, L. and Shen, F. (2018), "Experimental study on shear behavior of steel fiber reinforced concrete beams with high-strength reinforcement", Mater., 11(9), 1682. https://doi.org/10.3390/ma11091682.
- Zhao, M., Zhang, B., Shang, P., Fu, Y., Zhang, X. and Zhao, S. (2019), "Complete stress-strain curves of self-compacting steel fiber reinforced expanded-shale lightweight concrete under uniaxial compression", Mater., 12(18), 2979. https://doi.org/10.3390/ma12182979.