DOI QR코드

DOI QR Code

On the mechanical characteristics of fiber reinforced polymer concrete

  • Asteris, Panagiotis G. (Computational Mechanics Laboratory, School of Pedagogical and Technological Education) ;
  • Naseri, Hamid (Department of Civil Engineering, Faculty of Engineering, Urmia University) ;
  • Hajihassani, Mohsen (Department of Civil Engineering, Faculty of Engineering, Urmia University) ;
  • Kharghani, Mehdi (Department of Civil Engineering, Faculty of Engineering, Islamic Azad University, Science and Research Branch of Tehran) ;
  • Chalioris, Constantin E. (Department of Civil Engineering, School of Engineering, Democritus University of Thrace)
  • Received : 2021.04.25
  • Accepted : 2021.07.28
  • Published : 2021.10.25

Abstract

Polymer Concrete (PC) is a composite material made by fully replacing the cement hydrate binders of conventional cement concrete with polymer binders or liquid resins. As expected, the physico-mechanical properties of PC concrete are governed by the composition of the PC mixture. The present study aims to examine the effect of the aggregate type and of the addition of steel fibers on the mechanical properties of PC. In particular, two PC concrete mixtures, using granite or silica aggregates, have been developed and the effect of the addition of steel fibers has been investigated. The PC mixtures are characterized by mechanical tests such as the compression test, the flexural test, the splitting tensile test and the estimation of the energy absorption. The results of this study demonstrate a relative superiority, in terms of mechanical properties, of the PC made with granite aggregates as compared to that of the silica aggregate mixture. Moreover, the addition of steel fibers on PC mixtures showed a significant increase of the compressive toughness, of the splitting tensile and of the flexural strength, whereas the Young's modulus and compressive strength showed a slight increase.

Keywords

References

  1. ACI 544.4R (2018), Guide to design with fiber-reinforced concrete, American Concrete Institute; Farmington Hills, MI, USA.
  2. ASTM C33 (2008), Standard Specification for Concrete Aggregates, ASTM International; West Conshohocken, USA.
  3. ASTM C469 (2002), Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression, ASTM International, West Conshohocken, PA.
  4. ASTM C496 (2017), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International; West Conshohocken, PA.
  5. ASTM C579 (2018), Standard Test Methods for Compressive Strength of Chemical-Resistant Mortars, Grouts, Monolithic Surfacings and Polymer Concrete, ASTM International, West Conshohocken, PA.
  6. ASTM C580 (2018), Standard Test Method for Flexural Strength and Modulus of Elasticity of Chemical Resistant Mortars, Grouts, Monolithic Surfacings, and Polymer Concretes, ASTM International, West Conshohocken, PA.
  7. Barbuta, M. and Lepadatu, D. (2008), "Mechanical characteristics investigation of polymer concrete using mixture design of experiments and response surface method", J. Appl. Sci., 8(12), 2242-2249. https://doi.org/10.3923/jas.2008.2242.2249.
  8. Barbuta, M., Harja, M. and Baran, I. (2010), "Comparison of mechanical properties for polymer concrete with different types of filler", J. Mater. Civil Eng., 22(7), 696-701. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000069.
  9. Barbuta, M., Rujanu, M. and Nicuta, A. (2016), "Characterization of polymer concrete with different wastes additions", Proc. Tech., 22, 407-412. https://doi.org/10.1016/j.protcy.2016.01.069.
  10. Bedi, R., Chandra, R. and Singh, S.P. (2013), "Mechanical properties of polymer concrete", J. Compos., 948745. https://doi.org/10.1155/2013/948745.
  11. Bencardino, F., Rizzuti, L., Spadea, G. and Swamy, R.N. (2013), "Implications of test methodology on post-cracking and fracture behavior of steel fiber reinforced concrete", Compos. Part B Eng., 46, 31-38. https://doi.org/10.1016/j.compositesb.2012.10.016.
  12. Brockenbrough, T.W. and Patterson, D.N. (1982), "Fiber reinforced methacrylate polymer concrete", ACI J., 79(4), 322-325.
  13. Bulut, H.A. and Sahin, R. (2017), "A study on mechanical properties of polymer concrete containing electronic plastic waste", Compos. Struct., 178, 50-62. https://doi.org/10.1016/j.compstruct.2017.06.058.
  14. Caggiano, A., Cremona, M., Faella, C., Lima, C. and Martinelli, E. (2012), "Fracture behavior of concrete beams reinforced with mixed long/short steel fibers", Constr. Build. Mater., 37, 832-840. https://doi.org/10.1016/j.conbuildmat.2012.07.060.
  15. Campione, G. (2015), "Analytical prediction of load deflection curves of external steel fibers R/C beam-column joints under monotonic loading", Eng. Struct., 83, 86-98. https://doi.org/10.1016/j.engstruct.2014.10.047.
  16. Campione, G. and Mangiavillano, M.L. (2008), "Fibrous reinforced concrete beams in flexure: Experimental investigation, analytical modelling and design considerations", Eng. Struct., 30, 2970-2980. https://doi.org/10.1016/j.engstruct.2008.04.019.
  17. Cardoso, C., Camoes, A., Eires, R., Mota, A., Araujo, J., Castro, F. and Carvalho, J. (2018), "Using foundry slag of ferrous metals as fine aggregate for concrete", Resour. Conserv. Recyc., 138, 130-141. https://doi.org/10.1016/j.resconrec.2018.05.020.
  18. Chalioris, C.E. (2013), "Analytical approach for the evaluation of minimum fibre factor required for steel fibrous concrete beams under combined shear and flexure", Constr. Build. Mater., 43, 317-336. https://doi.org/10.1016/j.conbuildmat.2013.02.039.
  19. Chalioris, C.E. and Karayannis, C.G. (2009), "Effectiveness of the use of steel fibres on the torsional behaviour of flanged concrete beams", Cement Concrete Compos., 31(5), 331-341. https://doi.org/10.1016/j.cemconcomp.2009.02.007.
  20. Chalioris, C.E. and Liotoglou, F.A. (2015), "Tests and simplified behavioral model for steel fibrous concrete under compression", Adv. Civil Eng. Build. Mater. IV; Chang, S.-Y., Al Bahar, S.K., Husain, A.-A.M., Zhao, J., Eds, 195-199.
  21. Chalioris, C.E. and Panagiotopoulos, T.A. (2018), "Flexural analysis of steel fibre-reinforced concrete members", Comput. Concrete, 22(1), 11-25. https://doi.org/10.12989/cac.2018.22.1.011.
  22. Chalioris, C.E. and Sfiri, E.F. (2011), "Shear performance of steel fibrous concrete beams", Proc. Eng., 14, 2064-2068. https://doi.org/10.1016/j.proeng.2011.07.259.
  23. Chalioris, C.E., Kosmidou, P.M.K. and Karayannis, C.G. (2019), "Cyclic response of steel fiber reinforced concrete slender beams: an experimental study", Mater., 12(9), 1398. https://doi.org/10.3390/ma12091398.
  24. Doghmane, M., Hadjoub, F., Doghmane, A. and Hadjoub, Z. (2007), "Approaches for evaluating Young's and shear moduli in terms of a single SAW velocity via SAM technique", Mater. Lett., 61(3), 813-816. https://doi.org/10.1016/j.matlet.2006.05.080.
  25. Douba, A.E., Emiroglou, M., KandiL, U.F. and Taha, M.M.R. (2019), "Very ductile polymer concrete using carbon nanotubes", Constr. Build. Mater., 196, 468-477. https://doi.org/10.1016/j.conbuildmat.2018.11.021.
  26. Ferdous, W., Manalo, A., Aravinthan, T. and Van Erp, G. (2016), "Properties of epoxy polymer concrete matrix: effect of resinto-filler ratio and determination of optimal mix for composite railway sleepers", Constr. Build. Mater., 124, 287-300. https://doi.org/10.1016/j.conbuildmat.2016.07.111.
  27. Ferdous, W., Manalo, A., Wong, H.S., Abousnina, R., AlAjarmeh, O.S., Zhuge, Y. and Schubel, P. (2020), "Optimal design for epoxy polymer concrete based on mechanical properties and durability aspects", Constr. Build. Mater., 232, 117229. https://doi.org/10.1016/j.conbuildmat.2019.117229.
  28. Foray-Thevenin, G., Vigier, G., Vassoille, R. and Orange, G. (2006), "Characterization of cement paste by dynamic mechanical thermo-analysis. Part I: Operative conditions", Mater. Charact., 56(2), 129-137. https://doi.org/10.1016/j.matchar.2005.10.007.
  29. Fowler, D.W. (1999), "Polymers in concrete: a vision for the 21st century", Cement Concrete Compos., 21(5-6), 449-452. https://doi.org/10.1016/S0958-9465(99)00032-3.
  30. Garbacz, A. and Sokolowska, J.J. (2013), "Concrete-like polymer composites with fly ashes-Comparative study", Constr. Build. Mater., 38, 689-699. https://doi.org/10.1016/j.conbuildmat.2012.08.052.
  31. Gribniak, V., Kaklauskas, G., Kwan, A.K.H., Bacinskas, D. and Ulbinas, D. (2012), "Deriving stress-strain relationships for steel fibre concrete in tension from tests of beams with ordinary reinforcement", Eng. Struct., 42, 387-395. https://doi.org/10.1016/j.engstruct.2012.04.032.
  32. Gribniak, V., Ng, P.L., Tamulenas, V., Misiunaite, I., Norkus, A. and Sapalas, A. (2019), "Strengthening of fibre reinforced concrete elements: Synergy of the fibres and external sheet", Sustain., 11(16), 4456. https://doi.org/10.3390/su11164456.
  33. Gribniak, V., Tamulenas, V., Ng, P.L., Arnautov, A.K., Gudonis, E. and Misiunaite, I. (2017), "Mechanical behavior of steel fiber-reinforced concrete beams bonded with external carbon fiber sheets", Mater., 10(6), 666. https://doi.org/10.3390/ma10060666.
  34. Guerini, V., Conforti, A., Plizzari, G.A. and Kawashima, S. (2018), "Influence of steel and macro-synthetic fibers on concrete properties", Fibers, 6(3), 47. https://doi.org/10.3390/fib6030047.
  35. Gunasekaran, M. (2000), "Polymer concrete: a versatile, low-cost material for Asian electrical infrastructure systems", Proc. IEEE Int. Symp. Electr. Insulation, 356-361.
  36. Guo, Y., Xie, J., Zhao, J. and Zuo, K. (2019), "Utilization of unprocessed steel slag as fine aggregate in normal- and high-strength concrete", Constr. Build. Mater., 204, 41-49, https://doi.org/10.1016/j.conbuildmat.2019.01.178.
  37. Haidar, M., Ghorbel, E. and Toutanji, H. (2011), "Optimization of the formulation of micro-polymer concretes", Constr. Build. Mater., 25(4), 1632-1644. https://doi.org/10.1016/j.conbuildmat.2010.10.010.
  38. Hameed, A.M. and Hamza, M.T. (2019), "Characteristics of polymer concrete produced from wasted construction materials", Energy Proc., 157, 43-50. https://doi.org/10.1016/j.egypro.2018.11.162.
  39. Hashemi, M.J., Jamshidi, M. and Aghdam, J.H. (2017), "Investigating fracture mechanics and flexural properties of unsaturated polyester polymer concrete (UP-PC)", Constr. Build. Mater., 163, 767-775. https://doi.org/10.1016/j.conbuildmat.2017.12.115.
  40. Heidari-Rarani, M., Aliha, M.R.M., Shokrieh, M.M. and Ayatollahi, M.R. (2014), "Mechanical durability of an optimized polymer concrete under various thermal cyclic loadings-An experimental study", Constr. Build. Mater., 64, 308-315. https://doi.org/10.1016/j.conbuildmat.2014.04.031.
  41. Hong, S., Kim, H. and Park, S.K. (2016), "Optimal mix and freeze-thaw durability of polysulfide polymer concrete", Constr. Build. Mater., 127, 539-545. https://doi.org/10.1016/j.conbuildmat.2016.10.056.
  42. Jafari, K., Tabatabaeian, M., Joshaghani, A. and Ozbakkaloglu, T. (2018), "Optimizing the mixture design of polymer concrete: An experimental investigation", Constr. Build. Mater., 167, 185-196. https://doi.org/10.1016/j.conbuildmat.2018.01.191.
  43. Jin, N.J., Yeon, J., Seung, I. and Yeon, K.S. (2017), "Effects of curing temperature and hardener type on the mechanical properties of bisphenol F-type epoxy resin concrete", Constr. Build. Mater., 156, 933-943. https://doi.org/10.1016/j.conbuildmat.2017.09.053.
  44. Karayannis, C.G. (2000), "Nonlinear analysis and tests of steel-fiber concrete beams in torsion", Struct. Eng. Mech., 9(4), 323-338. https://doi.org/10.12989/sem.2000.9.4.323.
  45. Kazemi, M., Madandoust, R. and de Brito, J. (2019), "Compressive strength assessment of recycled aggregate concrete using Schmidt rebound hammer and core testing", Constr. Build. Mater., 224, 630-638. https://doi.org/10.1016/j.conbuildmat.2019.07.110.
  46. Khalid, N.H.A., Hussin, M.W., Mirza, J., Ariffin, N.F., Ismail, M.A., Lee, H.S., Mohamed, A. and Jaya, R.P. (2016), "Palm oil fuel ash as potential green micro-filler in polymer concrete", Constr. Build. Mater., 102, 950-960. https://doi.org/10.1016/j.conbuildmat.2015.11.038.
  47. Kim, K.S., Lee, D.H., Hwang, J.H. and Kuchma, D.A. (2012), "Shear behavior model for steel fiber-reinforced concrete members without transverse reinforcements", Compos. Part B Eng., 43(5), 2324-2334. https://doi.org/10.1016/j.compositesb.2011.11.064.
  48. Kou, S.C. and Poon, C.S. (2013), "A novel polymer concrete made with recycled glass aggregates, fly ash and metakaolin", Constr. Build. Mater., 41, 146-151. https://doi.org/10.1016/j.conbuildmat.2012.11.083.
  49. Kytinou, V.K., Chalioris, C.E. and Karayannis, C.G. (2020), "Analysis of residual flexural stiffness of steel fiber-reinforced concrete beams with steel reinforcement", Mater., 13(12), 2698. https://doi.org/10.3390/ma13122698.
  50. Kytinou, V.K., Chalioris, C.E., Karayannis, C.G. and Elenas, A. (2020), "Effect of steel fibers on the hysteretic performance of concrete beams with steel reinforcement-Tests and analysis", Mater., 13(13), 2923. https://doi.org/10.3390/ma13132923.
  51. Lam, M.N.T., Le, D.H. and Jaritngam, S. (2018), "Compressive strength and durability properties of roller-compacted concrete pavement containing electric arc furnace slag aggregate and fly ash", Constr. Build. Mater., 191, 912-922. https://doi.org/10.1016/j.conbuildmat.2018.10.080.
  52. Lantsoght, E.O.L. (2019), "How do steel fibers improve the shear capacity of reinforced concrete beams without stirrups?", Compos. Part B Eng., 175, 107079. https://doi.org/10.1016/j.compositesb.2019.107079.
  53. Lee, J.Y., Shin, H.O., Yoo, D.Y. and Yoon, Y.S. (2018), "Structural response of steel-fiber-reinforced concrete beams under various loading rates", Eng. Struct., 156, 271-283. https://doi.org/10.1016/j.engstruct.2017.11.052.
  54. Lee, S.C., Oh, J.H. and Cho, J.Y. (2015), "Compressive behavior of fiber-reinforced concrete with end-hooked steel fibers", Mater., 8(4), 1442-1458. https://doi.org/10.3390/ma8041442.
  55. Lokuge, W.P. and Aravinthan, T. (2013), "Mechanical properties of polymer concrete with different types of resin", Proceedings of the 22nd Australasian Conference on the Mechanics of Structures and Materials, Sydney, Australia.
  56. Mahdi, F., Abbas, H. and Ali, A. (2013), "Flexural, shear and bond strength of polymer concrete utilizing recycled resin obtained from post consumer PET bottles", Constr. Build. Mater., 44, 798-811. https://doi.org/10.1016/j.conbuildmat.2013.03.081.
  57. Maksimov, R.D., Jirgens, L., Jansons, J. and Plume, E. (1999), "Mechanical properties of polyester polymer-concrete", Mech. Compos. Mater., 35(2), 99-110. https://doi.org/10.1007/BF02257239.
  58. Mani, P., Gupta, A.K. and Krishnamoorthy, S. (1987), "Comparative study of epoxy and polyester resin-based polymer concretes", Int. J. Adhesion Adhesiv., 7(3), 157-163. https://doi.org/10.1016/0143-7496(87)90071-6.
  59. Martinez-Barrera, G., Menchaca-Campos, C. and Gencel, O. (2013), "Polyester polymer concrete: Effect of the marble particle sizes and high gamma radiation doses", Constr. Build. Mater., 41, 204-208. https://doi.org/10.1016/j.conbuildmat.2012.12.009.
  60. Mohammed, A.A. and Rahim, A.A.F. (2020), "Experimental behavior and analysis of high strength concrete beams reinforced with PET waste fiber", Constr. Build. Mater., 244, 118350. https://doi.org/10.1016/j.conbuildmat.2020.118350.
  61. Murthy, A.R., Aravindan, M. and Ganesh, P. (2018), "Prediction of flexural behaviour of RC beams strengthened with ultrahigh performance fiber reinforced concrete", Struct. Eng. Mech., 65(3), 315-325. https://doi.org/10.12989/sem.2018.65.3.315.
  62. Murthy, A.R., Karihaloo, B.L., Rani, P.V. and Priya, D.S. (2018), "Fatigue behaviour of damaged RC beams strengthened with ultrahigh performance fiber reinforced concrete", Int. J. Fatigue, 116, 659-668. https://doi.org/10.1016/j.ijfatigue.2018.06.046.
  63. Naaman, A.E. (2003), "Engineered steel fibers with optimal properties for reinforcement of cement composites", J. Adv. Concrete Tech., 1(3), 241-252. https://doi.org/10.3151/jact.1.241.
  64. Nataraja, M.C., Dhang, N. and Gupta, A.P. (1999), "Stress-strain curves for steel fiber reinforced concrete under compression", Cement Concrete Compos., 21(5-6), 383-390. https://doi.org/10.1016/S0958-9465(99)00021-9.
  65. Niaki, M.H., Fereidoon, A. and Ahangari, M.G. (2018), "Experimental study on the mechanical and thermal properties of basalt fiber and nanoclay reinforced polymer concrete", Compos. Struct., 191, 231-238. https://doi.org/10.1016/j.compstruct.2018.02.063.
  66. Nogueira, P., Ramirez, C., Torres, A., Abad, M.J., Cano, J., Lopez, J., Lopez-Bueno, I. and Barral, L. (2001), "Effect of water sorption on the structure and mechanical properties of an epoxy resin system", Appl. Polym. Sci., 80(1), 71-80. https://doi.org/10.1002/1097-4628(20010404)80:1<71::AID-APP1077>3.0.CO;2-H.
  67. Noumowe, A. (2005), "Mechanical properties and microstructure of high strength concrete containing polypropylene fibers exposed to temperatures up to 200 C", Cement Concrete Res., 35(11), 2192-8. https://doi.org/10.1016/j.cemconres.2005.03.007.
  68. Ohama, Y. (1973), "Mix proportions and properties of polyester resin concretes", Am. Concrete Inst., 40, 283-294.
  69. Okada, K., Koyanagi, W. and Yonezawa, T. (1975) "Thermo dependent properties of polyester resin concrete", Proceedings of the 5th International Congress on Polymer Concrete, Lancaster, May.
  70. Olivito, R.S. and Zuccarello, F.A. (2010), "An experimental study on the tensile strength of steel fiber reinforced concrete", Compos. Part B Eng., 41(3), 246-255. https://doi.org/10.1016/j.compositesb.2009.12.003.
  71. Pal, S., Tiwari, S., Katyal, K. and Singh, A. (2019), "Effect of polymer modification on structural and mechanical properties of concrete using epoxy emulsion as the modifier", Innov. Mater. Sci. Eng., 1-10. https://doi.org/10.1007/978-981-13-2944-9_1.
  72. Pratap, A. (2002), "Vinyl ester and acrylic based polymer concrete for electrical applications", Prog. Cryst. Growth Charact. Mater., 45(1-2), 117-125. https://doi.org/10.1016/S0960-8974(02)00036-0.
  73. Rahmani, E., Dehestani, M., Beygi, M.H.A., Allahyari, H. and Nikbin, I.M. (2013), "On the mechanical properties of concrete containing waste PET particles", Constr. Build. Mater., 47, 1302-1308. https://doi.org/10.1016/j.conbuildmat.2013.06.041.
  74. Rebeiz, K.S. (1996), "Precast use of polymer concrete using unsaturated polyester resin based on recycled PET waste", Constr. Build. Mater., 10, 215-220. https://doi.org/10.1016/0950-0618(95)00088-7.
  75. Reis, J.M.L. (2005), "Mechanical characterization of fiber reinforced polymer concrete", Mater. Res., 8(3), 357-360. https://doi.org/10.1590/S1516-14392005000300023.
  76. Reis, J.M.L. (2006), "Fracture and flexural characterization of natural fiber-reinforced polymer concrete", Constr. Build. Mater., 20, 673-678. https://doi.org/10.1016/j.conbuildmat.2005.02.008.
  77. Reis, J.M.L. (2009), "Effect of textile waste on the mechanical properties of polymer concrete", Mater. Res., 12(1), 63-67. https://doi.org/10.1590/S1516-14392009000100007.
  78. Reis, J.M.L. and Ferreira, A.J.M. (2004), "Assessment of fracture properties of epoxy polymer concrete reinforced with short carbon and glass fibers", Constr. Build. Mater., 18, 523-528. https://doi.org/10.1016/j.conbuildmat.2004.04.010.
  79. Ribeiro, M.C.S., Fiuza, A., Castro, A.C.M., Silva, F.G., Dinis, M.L., Meixedo, J.P. and Alvim, M.R. (2013), "Mix design process of polyester polymer mortars modified with recycled GFRP waste materials", Compos. Struct., 105, 300-310. https://doi.org/10.1016/j.compstruct.2013.05.023.
  80. Ribeiro, M.C.S., Meira-Castro, A.C., Silva, F.G., Santos, J., Meixedo, J.P., Fiuza, A., Dinis, M.L. and Alvim, M.R. (2015), "Re-use assessment of thermoset composite wastes as aggregate and filler replacement for concrete-polymer composite materials: A case study regarding GFRP pultrusion wastes", Resour. Conserv. Recyc., 104, 417-426. https://doi.org/10.1016/j.resconrec.2013.10.001.
  81. Saribiyik, M., Piskin, A. and Saribiyik, A. (2013), "The effects of waste glass powder usage on polymer concrete properties", Constr. Build. Mater., 47, 840-844. https://doi.org/10.1016/j.conbuildmat.2013.05.023.
  82. Shokrieh, M.M., Rezvani, S. and Mosalmani, R. (2017), "Mechanical behavior of polyester polymer concrete under low strain rate loading conditions", Polym. Test., 63, 596-604. https://doi.org/10.1016/j.polymertesting.2017.09.015.
  83. Simoes, T., Octavio, C., Valenca, J., Costa, H., Dias-da-Costa, D. and Julio, E. (2017), "Influence of concrete strength and steel fiber geometry on the fiber/matrix interface", Compos. Part B Eng., 122, 156-164. https://doi.org/10.1016/j.compositesb.2017.04.010.
  84. Sosoi, G., Barbuta, M., Serbanoiu, A.A., Babor, D. and Burlacu, A. (2018), "Wastes as aggregate substitution in polymer concrete", Proc. Manuf., 22, 347-351. https://doi.org/10.1016/j.promfg.2018.03.052.
  85. Sun, J., Feng, J. and Chen, Z. (2019), "Effect of ferronickel slag as fine aggregate on properties of concrete", Constr. Build. Mater., 206, 201-209. https://doi.org/10.1016/j.conbuildmat.2019.01.187.
  86. Torres, J.A. and Lantsoght, E.O.L. (2019), "Influence of fiber content on shear capacity of steel fiber-reinforced concrete beams", Fiber., 7(12), 102. https://doi.org/10.3390/fib7120102.
  87. Toufigh, V., Hosseinali, M. and Shirkhorshidi, S.M. (2016), "Experimental study and constitutive modeling of polymer concrete's behavior in compression", Constr. Build. Mater., 112, 183-190. https://doi.org/10.1016/j.conbuildmat.2016.02.100.
  88. Tsonos, A.D.G. (2009), "Steel fiber high-strength reinforced concrete: A new solution for earthquake strengthening of old R/C structures", WIT Tran. Built Environ., 104, 153-164. https://doi.org/10.2495/ERES090141
  89. Tsonos, A.D.G. (2009), "Ultra-high-performance fiber reinforced concrete: An innovative solution for strengthening old R/C structures and for improving the FRP strengthening method", WIT Tran. Eng. Sci., 64, 273-284. https://doi.org/10.2495/MC090261
  90. Vipulanandan, C. and Paul, E. (1993), "Characterization of polyester polymer and polymer concrete", J. Mater. Civil Eng., ASCE, 5(1), 62-82. https://doi.org/10.1061/(ASCE)0899-1561(1993)5:1(62).
  91. Wang, J., Dai, Q., Guo, S. and Si, R. (2019), "Mechanical and durability performance evaluation of crumb rubber-modified epoxy polymer concrete overlays", Constr. Build. Mater., 203, 469-480. https://doi.org/10.1016/j.conbuildmat. 2019.01.085.
  92. Wang, M. and Wan, W. (2019), "A new empirical formula for evaluating uniaxial compressive strength using the Schmidt hammer test", Int. J. Rock Mech. Min. Sci., 123, 104094. https://doi.org/10.1016/j.ijrmms.2019.104094 104094.
  93. Xu, P. and Yu, Y.H. (2008), "Research on steel-fiber polymer concrete machine tool structure", J. Coal Sci. Eng., 14(4), 689-692. https://doi.org/10.1007/s12404-008-0444-z.
  94. Yoo, D.Y., Banthia, N., Lee, J.Y. and Yoon, Y.S. (2018), "Effect of fiber geometric property on rate dependent flexural behavior of ultra-high-performance cementitious composite", Cement Concrete Compos., 86, 57-71. https://doi.org/10.1016/j.cemconcomp.2017.11.002.
  95. Zhao, J., Liang, J., Chu, L. and Shen, F. (2018), "Experimental study on shear behavior of steel fiber reinforced concrete beams with high-strength reinforcement", Mater., 11(9), 1682. https://doi.org/10.3390/ma11091682.
  96. Zhao, M., Zhang, B., Shang, P., Fu, Y., Zhang, X. and Zhao, S. (2019), "Complete stress-strain curves of self-compacting steel fiber reinforced expanded-shale lightweight concrete under uniaxial compression", Mater., 12(18), 2979. https://doi.org/10.3390/ma12182979.