DOI QR코드

DOI QR Code

Apply a robust fuzzy LMI control scheme with AI algorithm to civil frame building dynamic analysis

  • Chen, Z.Y. (School of Science, Guangdong University of Petrochem Technol) ;
  • Jiang, Rong (School of Science, Guangdong University of Petrochem Technol) ;
  • Wang, Ruei-Yuan (School of Science, Guangdong University of Petrochem Technol) ;
  • Chen, Timothy (Division of Engineering and Applied Science, California Institute of Technology)
  • Received : 2021.05.22
  • Accepted : 2021.09.28
  • Published : 2021.10.25

Abstract

In recent years, more and more experimental studies have shown that the development of mature active control design in practice requires consideration of robustness criteria in the design process, including robustness and stability in practice considering the uncertainty in the system. This article proposes a robust test method for the control of civil structures. In order to facilitate the calculation of the H∞ performance, a linear matrix inequality (LMI) based on this effective solution is also introduced, which combines H∞ control and LMI fuzzy neural network approach. In order to check the suitability of the proposed method, the earthquake excitation during the active support of digital building models conducted extensive simulations. The model includes a one all steel frame vibration table test. In the simulation, the controller design is based on the uncertainty of the system, and the use of throttle feedback is emphasized for practical reasons. The simulation results show that the performance of the controller proposition is significant, powerful, and the effectiveness. Therefore, this robust control method is suitable for seismic protection of civil structure buildings.

Keywords

References

  1. Adam, T.J. and Horst, P. (2014), "Experimental investigation of the very high cycle fatigue of GFRP [90/0]s cross-ply specimens subjected to high-frequency four-point bending", Compos. Sci. Tech., 101, 62-70. https://doi.org/10.1016/j.compscitech.2014.06.023.
  2. Adeli, H. and Jiang, X. (2006), "Dynamic fuzzy wavelet neural network model for structural system identification", J. Struct. Eng., 132(1), 102-111. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:1(102).
  3. Backe, D., Balle, F. and Eifler, D. (2015), "Fatigue testing of CFRP in the Very High Cycle Fatigue (VHCF) regime at ultrasonic frequencies", Compos. Sci. Tech., 106, 93-99. https://doi.org/10.1016/j.compscitech.2014.10.020.
  4. Bak, B.L., Sarrado, C., Turon, A. and Costa, J. (2014), "Delamination under fatigue loads in composite laminates: A review on the observed phenomenology and computational methods", Appl. Mech. Rev., 66(6). 060803. https://doi.org/10.1115/1.4027647.
  5. Battista, R.C. and Varela, W.D. (2019), "A system of multiple controllers for attenuating the dynamic response of multimode floor structures to human walking", Smart Struct. Syst., 23(5), 467-478. https://doi.org/10.12989/sss.2019.23.5.467.
  6. Bedirhanoglu, I. (2014), "A practical neuro-fuzzy model for estimating modulus of elasticity of concrete", Struct. Eng. Mech., 51(2), 249-265. https://doi.org/10.12989/sem.2014.51.2.249.
  7. Cairns, D.S., Mandell, J.F., Scott, M.E. and Maccagnano, J.Z. (1999), "Design and manufacturing considerations for ply drops in composite structures", Compos. Part B Eng., 30(5), 523-534. https://doi.org/10.1016/S1359-8368(98)00043-2.
  8. Carrella, A. and Ewins, D.J. (2011), "Identifying and quantifying structural nonlinearities in engineering applications from measured frequency response functions", Mech. Syst. Signal Process., 25(3), 1011-1027. https://doi.org/10.1016/j.ymssp.2010.09.011.
  9. Chawla, K.K. (2012), Composite Materials: Science and Engineering, Springer Science and Business Media. https://doi.org/10.1007/978-0-387-74365-3_13.
  10. Chen, C.W. (2014), "A criterion of robustness intelligent nonlinear control for multiple time-delay systems based on fuzzy Lyapunov methods", Nonlin. Dyn., 76(1), 23-31. https://doi.org/10.1007/s11071-013-0869-9.
  11. Chen, C.W. (2014), "Interconnected TS fuzzy technique for nonlinear time-delay structural systems", Nonlin. Dyn., 76(1), 13-22. https://doi.org/10.1007/s11071-013-0841-8.
  12. Chen, T. and Cheng, J.Y. (2020), "On the algorithmic stability of optimal control with derivative operators", Circuit. Syst. Signal Process., 39(12), 5863-5881. https://doi.org/10.1007/s00034-020-01447-1.
  13. Chen, T., Babanin, A., Muhammad, A., Chapron, B. and Chen, C.Y.J. (2020), "Evolved fuzzy NN control for discrete-time nonlinear systems", J. Circuit. Syst. Comput., 29(1), 2050015. https://doi.org/10.1142/S0218126620500152.
  14. Chen, T., Crosbie, R.C., Anandkumarb, A., Melville, C. and Chan, J. (2021), "Optimized AI controller for reinforced concrete frame structures under earthquake excitation", Adv. Concrete Constr., 11(1), 1-9. https://doi.org/10.12989/acc.2021.11.1.001.
  15. Chen, T., Huang, Y.C., Hung, C.C., Frias, S., Muhammad, J.A. and Chen, C.Y.J. (2021), "Smart structural stability and NN based intelligent control for nonlinear systems", Smart Struct. Syst., 27(6), 917-926. https://doi.org/10.12989/sss.2021.27.6.917.
  16. Chen, T., Huang, Y.C., Xu, Z.W. and Chen, J.C.Y. (2021), "Wind vibration control of stay cables using an evolutionary algorithm", Wind Struct., 32(1), 71-80. https://doi.org/10.12989/was.2021.32.1.071.
  17. Chen, T., Kapronand, N., Hsieh, C.Y. and Chen, J.C. (2021), "Evolved auxiliary controller with applications to aerospace", Aircraft Eng. Aerosp. Tech., 93(4), 529-543. https://doi.org/10.1108/AEAT-12-2019-0233.
  18. Chen, T., Kau, D., Tai, Y. and Chen, C.Y.J. (2020), "LMI based criterion for reinforced concrete frame structures", Adv. Concrete Constr. 9(4), 407-412. https://doi.org/10.12989/acc.2020.9.4.407.
  19. Chen, T., Kuo, D. and Chen, C.Y.J. (2021), "Fuzzy C-means robust algorithm for nonlinear systems", Soft Comput., 25(11), 7297-7305. https://doi.org/10.1007/s00500-021-05655-y.
  20. Chen, T., Rao, S., Sabitovich, R.T., Chapron, B. and Chen, C.Y.J. (2020), "An intelligent algorithm optimum for building design of fuzzy structures", Iran. J. Sci. Tech. Trans. Civil Eng., 44(2), 523-531. https://doi.org/10.1007/s40996-019-00251-5.
  21. Chen, Z.Y., Huang, L., Wu, H., Meng, Y., Xiang, S. and Chen, T. (2021), "Grey signal predictor and evolved control for practical nonlinear mechanical systems", J. Grey Syst., 33(1), 156-170.
  22. Chen, Z.Y., Wang, R.Y., Meng, Y., Fu, Q. and Chen, T. (2021), "Smart structural control and analysis for earthquake excited building with evolutionary design", Struct. Eng. Mech., 79(2), 131-139. https://doi.org/10.12989/sem.2021.79.2.131.
  23. Claeys, J., Van Wittenberghe, J., De Baets, P. and De Waele, W. (2011), "Characterisation of a resonant bending fatigue setup for pipes", Sustain. Constr. Des., 2(3), 424-431.
  24. Conceicao Antonio, C. (2011), "Design with composites: material uncertainty in designing composites component", Wiley Encyclopedia Compos., 1-12. https://doi.org/10.1002/9781118097298.weoc068.
  25. Cotrell, J., Thresher, R., Lambert, S., Hughes, S. and Johnson, J. (2014), U.S. Patent No. 8,677,827., U.S. Patent and Trademark Office, USA.
  26. Di Maio, D. and Magi, F. (2015), "Development of testing methods for endurance trials of composites components", J. Compos. Mater., 49(24), 2977-2991. https://doi.org/10.1177/0021998314558497.
  27. Eswaran, M. and Reddy, G.R. (2016), "Numerical simulation of tuned liquid tank-structure systems through σ-transformation based fluid-structure coupled solver", Wind Struct., 23(5), 421-447. https://doi.org/10.12989/was.2016.23.5.421.
  28. Ewins, D.J. (1984), Modal Testing, Theory and Practice, Research Studies Press, Ltd., Taunton, UK.
  29. Gu, J., Sol, H. and Van Paepegem, W. (2009), "The study of resonance fatigue testing of test beams made of composite material", Proc. PACAM XI.
  30. Harris, B. (2003), Fatigue in Composites: Science and Technology of the Fatigue Response of Fibre-Reinforced Plastics, Woodhead Publishing.
  31. Just-Agosto, F., Peralta, A., Shafiq, B. and Serrano, D. (2009), "A vibration technique to obtain fatigue", ICCM17 Proceedings, Edinburgh, UK.
  32. Katunin, A. and Fidali, M. (2012), "Self-heating of polymeric laminated composite plates under the resonant vibrations: Theoretical and experimental study", Polym. Compos., 33(1), 138-146. https://doi.org/10.1002/pc.22134.
  33. Lazan, B.J. (1954), "Fatigue failure under resonant vibration conditions", Minnesota University Minneapolis Inst of Tech.
  34. Lim, S.G. and Hong, C.S. (1989), "Prediction of transverse cracking and stiffness reduction in cross-ply laminated composites", J. Compos. Mater., 23(7), 695-713. https://doi.org/10.1177/002199838902300704.
  35. Lu, X., Lestari, W. and Hanagud, S. (2001), "Nonlinear vibrations of a delaminated beam", J. Vib. Control, 7(6), 803-831. https://doi.org/10.1177/107754630100700603.
  36. Magi, F., Di Maio, D. and Sever, I. (2016), "Damage initiation and structural degradation through resonance vibration: Application to composite laminates in fatigue", Compos. Sci. Tech., 132, 47-56. https://doi.org/10.1016/j.compscitech.2016.06.013.
  37. Magi, F., Di Maio, D. and Sever, I. (2017), "Validation of initial crack propagation under vibration fatigue by Finite Element analysis", Int. J. Fatigue, 104, 183-194. https://doi.org/10.1016/j.ijfatigue.2017.07.003.
  38. Mandell, J.F. (1981), "Fatigue crack growth in fiber reinforced plastics", Polym. Compos., 2(1), 22-28. https://doi.org/10.1002/pc.750020106.
  39. Mivehchi, H. and Varvani-Farahani, A. (2011), "Erratum to: Temperature dependence of stress-Fatigue life data of FRP composites", Mech. Compos. Mater., 47, 185-192. https://doi.org/10.1007/s11029-011-9197-7.
  40. Mori, T. (1985), "Criteria for asymptotic stability of linear time-delay systems", IEEE Trans. Autom. Control, 30(2), 158-161. https://doi.org/10.1109/TAC.1985.1103901
  41. Musial, W. and White, D. (2011), Resonance Test System, Alliance for Sustainable Energy, LLC.
  42. Nairn, J.A. and Hu, S. (1992), "The initiation and growth of delaminations induced by matrix microcracks in laminated composites", Int. J. Fract., 57(1), 1-24. https://doi.org/10.1007/BF00013005.
  43. Pickard, A. (2012), "High cycle endurance of carbon fibre reinforced plastic: Delamination prediction and measurement", Ph.D. Dissertation of Philosophy, University of Bristol.
  44. Preumont, A. (2011), Vibration Control of Active Structures: An Introduction, Springer.
  45. Rabiei, K., Ordokhani, Y. and Babolian, E. (2017), "The Boubaker polynomials and their application to solve fractional optimal control problems", Nonlin. Dyn., 88(2), 1013-1026. https://doi.org/10.1007/s11071-016-3291-2.
  46. Razavi, A. and Sarkar, P.P. (2018), "Laboratory investigation of the effects of translation on the near-ground tornado flow field", Wind Struct., 26(3), 179-190. https://doi.org/10.12989/was.2018.26.3.179.
  47. Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S.B., Nor, N.M. and Petkovic, D. (2016), "Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam's shear strength", Steel Compos. Struct., 21(3), 679-688. https://doi.org/10.12989/scs.2016.21.3.679.
  48. Shariat, M., Shariati, M., Madadi, A. and Wakil, K. (2018), "Computational Lagrangian Multiplier Method by using for optimization and sensitivity analysis of rectangular reinforced concrete beams", Steel Compos. Struct., 29(2), 243-256. http://doi.org/10.12989/scs.2018.29.2.243.
  49. Shariatmadar, H. and Razavi, H.M. (2014), "Seismic control response of structures using an ATMD with fuzzy logic controller and PSO method", Struct. Eng. Mech., 51(4), 547-564. https://doi.org/10.12989/sem.2014.51.4.547.
  50. Shariatmadar, H. and Razavi, H.M. (2014), "Seismic control response of structures using an ATMD with fuzzy logic controller and PSO method", Struct. Eng. Mech., 51(4), 547-564. https://doi.org/10.12989/sem.2014.51.4.547.
  51. Shen, W., Zhu, S., Zhu, H. and Xu, Y.L. (2016), "Electromagnetic energy harvesting from structural vibrations during earthquakes", Smart Struct. Syst., 18(3), 449-470. https://doi.org/10.12989/sss.2016.18.3.449.
  52. Sjogren, A. and Asp, L.E. (2002), "Effects of temperature on delamination growth in a carbon/epoxy composite under fatigue loading", Int. J. Fatigue, 24(2-4), 179-184. https://doi.org/10.1016/S0142-1123(01)00071-8.
  53. Son, L., Bur, M., Rusli, M. and Adriyan, A. (2016), "Design of double dynamic vibration absorbers for reduction of two DOF vibration system", Struct. Eng. Mech., 57(1), 161-178. https://doi.org/10.12989/sem.2016.57.1.161.
  54. Son, L., Bur, M., Rusli, M. and Adriyan, A. (2016), "Design of double dynamic vibration absorbers for reduction of two DOF vibration system", Struct. Eng. Mech., 57(1), 161-178. https://doi.org/10.12989/sem.2016.57.1.161.
  55. Talreja, R. (2008), "Damage and fatigue in composites-a personal account", Compos. Sci. Tech., 68(13), 2585-2591. https://doi.org/10.1016/j.compscitech.2008.04.042.
  56. Trinh, H. and Aldeen, M. (1995), "A comment on decentralized stabilization of large scale interconnected systems with delays", IEEE Trans. Autom. Control, 40(5), 914-916. https://doi.org/10.1109/9.384229.
  57. Tsai, P.W., Hayat, T., Ahmad, B. and Chen, C.W. (2015), "Structural system simulation and control via NN based fuzzy model", Struct. Eng. Mech., 56(3), 385-407. https://doi.org/10.12989/sem.2015.56.3.385.
  58. Tsai, P.W., Hayat, T., Ahmad, B. and Chen, C.W. (2015), "Structural system simulation and control via NN based fuzzy model", Struct. Eng. Mech., 56(3), 385-407. https://doi.org/10.12989/sem.2015.56.3.385.
  59. TSai, P.W., Pan, J.S., Liao, B.Y. and Chu, S.C. (2009), "Enhanced artificial bee colony optimization", Int. J. Innov. Comput., Inform. Control, 5(12), 5081-5092.
  60. Tsai, P.W., Pan, J.S., Liao, B.Y., Tsai, M.J. and Istanda, V. (2012), "Bat algorithm inspired algorithm for solving numerical optimization problems", Appl. Mech. Mater., 148, 134-137. https://doi.org/10.4028/www.scientific.net/AMM.148-149.134.
  61. Wozney, G.P. (1962), "Resonant-vibration fatigue testing", Exp. Mech., 2(1), 1-8. https://doi.org/10.1007/BF02325804.
  62. Yang, J.N., Wu, J.C. and Agrawal, A.K. (1995), "Sliding mode control for nonlinear and hysteretic structures", J. Eng. Mech., 121(12), 1330-1339. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:12(1330).
  63. Ying, Z.G., Ni, Y.Q. and Duan, Y.F. (2019), "Stochastic stability control analysis of an inclined stay cable under random and periodic support motion excitations", Smart Struct. Syst., 23(6), 641-651. https://doi.org/10.12989/sss.2019.23.6.641.
  64. Zaky, M.A. (2018), "A Legendre collocation method for distributed-order fractional optimal control problems", Nonlin. Dyn., 91(4), 2667-2681. https://doi.org/10.12989/sss.2019.23.6.641.
  65. Zandi, Y., Shariati, M., Marto, A., Wei, X., Karaca, Z., Dao, D.K. and Khorami, M. (2018), "Computational investigation of the comparative analysis of cylindrical barns subjected to earthquake", Steel Compos. Struct., 28(4), 439-447. http://doi.org/10.12989/scs.2018.28.4.439.
  66. Zhang, Y. (2015), "A fuzzy residual strength based fatigue life prediction method", Struct. Eng. Mech., 56(2), 201-221. https://doi.org/10.12989/sem.2015.56.2.201.
  67. Zhou, X., Lin, Y. and Gu, M. (2015), "Optimization of multiple tuned mass dampers for large-span roof structures subjected to wind loads", Wind Struct., 20(3), 363-388. https://doi.org/10.12989/was.2015.20.3.363.