DOI QR코드

DOI QR Code

Shear behavior of soft filling in intact model using particle flow code

  • Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology) ;
  • Asgari, Kaveh (Department of Mining Engineering, Shahid Bahonar University of Kerman)
  • Received : 2020.04.19
  • Accepted : 2021.09.28
  • Published : 2021.10.25

Abstract

In this paper, Shear behavior of soft filling in intact model has been investigated using particle flow code (PFC2D). Firstly, calibration of PF2D was performed to reproduce the concrete sample. Uniaxial strength of concrete was 37.2 MPa. Then, numerical models with dimension of 100 mm×100 mm were prepared. One, two and three rectangular filling were situated at the middle of the model. Dimension of filling were 2.5 mm×5 mm, 2.5 mm×10 mm and 2.5 mm×15 mm were prepared. The fillings were calibrated by parallel bond to reproduce the gypsum samples. Uniaxial strength of gypsum was 7.2 MPa. Totally 9 models were prepared. The shear test condition was added to the models. The normal load was fixed at 3 MPa (σc/3) and shear load was applied to model till failure occurred. The results show that, the filling was failure under normal loading. The tensile crack occurred in filling. Also shear cracks initiates at tip of the model and propagates parallel to shear loading axis till calescence to the filling. The shear strength and maximum shear displacement increase with increasing the dimension and number of fillings.

Keywords

References

  1. Akin, M. (2013), "Slope stability problems and back analysis in heavily jointed rock mass: A case study from Manisa, Turkey", Rock Mech. Rock Eng., 46(2), 359-371. https://doi.org/10.1007/s00603-012-0262-x.
  2. Bobet, A. (1997), "Fracture coalescence in rock materials: Experimental observations and numerical predictions", Ph.D. Dissertation of Philosophy, Massachusetts Institute of Technology, Cambridge.
  3. Einstein, H.H., Veneziano, D., Baecher, G.B. and O'Reilly, K.J. (1983), "The effect of discontinuity persistence on rock stability", J. Rock Mech. Min. Sci. Geomech. Abstr., 20(5), 227236. https://doi.org/10.1016/0148-9062(83)90003-7.
  4. Gehle, C. and Kutter, H.K. (2003), "Breakage and shear behavior of intermittent rock joints", J. Rock Mech. Min. Sci., 40(5), 687700. https://doi.org/10.1016/S1365-1609(03)00060-1.
  5. Ghazvinian, A., Nikudel, M.R. and Sarfarazi, V. (2007), "Effect of rock bridge continuity and area on shear behavior of joints", Proceedings of the 11th Congress of the International Society for Rock Mechanics, Lisbon, July.
  6. Ghazvinian, A., Sarfarazi, V., Schubert, W. and Blumel, M. (2012), "A study of the failure mechanism of planar non-persistent open joints using PFC2D", Rock Mech. Rock Eng., 45(5), 677-693. https://doi.org/10.1007/s00603-012-0233-2.
  7. Griffith, A.A. (1921), "The phonomana of rupture and flow in sloids", Philos. Trans. R. Soc. London Ser. A, 221(582-593), 163-198. https://doi.org/10.1098/rsta.1921.0006.
  8. Haeri, H. and Sarfarazi, V. (2016a), "The effect of micro pore on the characteristics of crack tip plastic zone in concrete", Comput. Concrete, 17(1), 107-12. http://doi.org/10.12989/cac.2016.17.1.107.
  9. Haeri, H. and Sarfarazi, V. (2016b), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. http://doi.org/10.12989/cac.2016.17.6.723.
  10. Haeri, H. and Sarfarazi, V. (2016c), "The deformable multilaminate for predicting the elasto-plastic behavior of rocks", Comput. Concrete, 18, 201-214. http://doi.org/10.12989/cac.2016.18.2.201.
  11. Haeri, H., Sarfarazi, V. and Lazemi, H.A. (2016d), "Experimental study of shear behavior of planar non-persistent joint", Comput. Concrete, 17(5), 639-653. http://doi.org/10.12989/cac.2016.17.5.639.
  12. Ibrahim, M.W., Hamzah, A.F., Jamaluddin, N., Ramadhansyah, P.J. and Fadzil, A.M. (2015), "Split tensile strength on self compacting concrete containing coal bottom ash", Proc. Soc. Behav. Sci., 198, 2280-2289. https://doi.org/10.1016/j.sbspro.2015.06.317.
  13. Jaeger, J.C. (1971), "Friction of rocks and stability of rock slopes", Geotechnique, 21(2), 97-134. https://doi.org/10.1680/geot.1971.21.2.97.
  14. Jiang, Z., Wan, S., Zhong, Z., Li, M. and Shen, K. (2014), "Determination of mode-I fracture toughness and nonuniformity for GFRP double cantilever beam specimens with an adhesive layer", Eng. Fract. Mech., 128, 139-156. https://doi.org/10.1016/j.engfracmech.2014.07.011.
  15. Lancaster, I.M., Khalid, H.A. and Kougioumtzoglou, I.A. (2013), "Extended FEM modelling of crack propagation using the semicircular bending test", Constr. Build. Mater., 48, 270-277. https://doi.org/10.1016/j.conbuildmat.2013.06.046.
  16. Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute di placement measuring system for static and dynamic geomechanical model tests", Meas., 105, 25-33. https://doi.org/10.1016/j.measurement.2017.04.002.
  17. Li, Y., Li, C., Zhang, L., Zhu, W., Li, S. and Liu, J. (2016), "An experimental investigation on mechanical property and anchorage effect of bolted jointed rock mass", Geosci. J., 21(2), 253-265. https://doi.org/10.1007/s12303-016-0043-8.
  18. Li, Y., Zhou, H., Zhu, W., Li, S. and Liu, J. (2016), "Experimental and numerical investigations on the shear behavior of a jointed rock mass", Geosci. J., 20(3), 371-379. https://doi.org/10.1007/s12303-015-0052-z.
  19. Li, Y., Zhou, H., Zhu, W., Li, S. and Liu, J. (2015), "Numerical study on crack propagation in brittle jointed rock mass influenced by fracture water pressure", Mater., 8(6), 33643376. https://doi.org/10.3390/ma8063364.
  20. Li, Y.P., Chen, L.Z. and Wang, Y.H. (2005), "Experimental research on pre-cracked marble under compression", J. Solid. Struct., 42(9-10), 2505-2516. https://doi.org/10.1016/j.ijsolstr.2004.09.033.
  21. Li, Y.Y., Zhou, H., Zhang L, Zhu, W., Li, S. and Liu, J. (2016), "Experimental and numerical investigations on mechanical property and reinforcement effect of bolted jointed rock mass", Constr. Build. Mater., 126, 843-856. https://doi.org/10.1016/j.conbuildmat.2016.09.100.
  22. Liu, X., Nie, Z., Wu, S. and Wang, C. (2015), "Self-monitoring application of conductive asphalt concrete under indirect tensile deformation", Case Study Constr. Mater., 3, 70-77. https://doi.org/10.1016/j.cscm.2015.07.002.
  23. Nehrii, S., Nehrii, T., Zolotarova, O. and Volkov, S. (2021), "Investigation of the geomechanical state of soft adjoining rocks under protective constructions", Rudarsko-geolosko-Naftni Zbornik, 36(4), 61-71. https://doi.org/10.17794/rgn.2021.4.6.
  24. Ning, J., Liu, X., Tan, Y., Wang, J. and Tian, C. (2015), "Relationship of box counting of fractured rock mass with Hoek-Brown parameters using particle flow simulation", Geomech. Eng., 9(5), 619-629. https://doi.org/10.12989/gae.2015.9.5.619.
  25. Noel, M. and Soudki, K. (2014), "Estimation of the crack width and deformation of FRP-reinforced concrete flexural members with and without transverse shear reinforcement", Eng. Struct., 59, 393-398. https://doi.org/10.1016/J.ENGSTRUCT.2013.11.005.
  26. Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 34(3), 66-78. https://doi.org/10.1016/j.ijrmms.2004.09.011.
  27. Panaghi, K., Golshani, A. and Takemura, T. (2015), "Rock failure assessment based on crack density and anisotropy index variations during triaxial loading tests", Geomech. Eng., 9(6), 793-813. https://doi.org/http://dx.doi.org/10.12989/gae.2015.9.6.793.
  28. MacG, R.A. (1970), "The interpretation of geological factors for use in slope theory", Proc. Symp. Plan. Open Pit Min., 55-71. https://doi.org/10.1016/0148-9062(78)91472-9.
  29. Sarfarazi, V. and Haeri, H. (2016a), "Effect of number and configuration of bridges on shear properties of sliding surface", J. Min. Sci., 52(2), 245-257. https://doi.org/10.1134/S1062739116020370.
  30. Sarfarazi, V., Faridi, H.R., Haeri, H. and Schubert, W. (2016b), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., 3(4), 269-284. http://doi.org/10.12989/acc.2015.3.4.26.
  31. Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2014), "Numerical simulation of the process of fracture of Echelon rock joints", Rock Mech. Rock Eng., 47(4), 1355-1371. https://doi.org/10.1007/s00603-013-0450-3.
  32. Sarfarazi, V., Haeri, H. and Khaloo, A. (2016c), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/cac.2016.17.6.723.
  33. Sagong, M. and Bobet, A. (2002), "Coalescence of multiple flaws in a rock-model material in uniaxial compression", J. Rock Mech. Min. Sci., 39(2), 229-241. https://doi.org/10.1016/S1365-1609(02)00027-8.
  34. Tian, Y., Shi, S., Jia, K. and Hu, S. (2015), "Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates presaturated polymer emulsion", Constr. Build. Mater., 93, 1151-1156. https://doi.org/10.1016/j.conbuildmat.2015.05.015.
  35. Wang, H., Li, Y., Li, S., Zhang, Q. and Liu, J. (2016), "An elastoplastic damage constitutive model for jointed rock mass with an application", Geomech. Eng., 11(1), 77-94. http://doi.org/10.12989/gae.2016.11.1.077.
  36. Wang, T., Dai, J.G. and Zheng, J.J. (2015), "Multi-angle truss model for predicting the shear deformation of RC beams with low span-effective depth ratios", Eng. Struct., 91, 85-95. https://doi.org/10.1016/j.engstruct.2015.02.035.
  37. Wang, X., Zhu, Z., Wang, M., Ying, P., Zhou, L. and Dong, Y. (2017), "Study of rock dynamic fracture toughness by using VB-SCSC specimens under medium-low speed impacts", Eng. Fract. Mech., 181, 52-64. https://doi.org/10.1016/j.engfracmech.2017.06.024.
  38. Yang, S.Q. (2015), "An experimental study on fracture coalescence characteristics of brittle sandstone specimens combined various flaws", Geomech. Eng., 8(4), 541-557. https://doi.org/10.12989/gae.2015.8.4.541.