Acknowledgement
The authors would like to express their thanks for the support provided from the Czech Science Foundation project MUFRAS No. 19-09491S and the specific university research project No. FAST-J-20-6413 granted by Brno University of Technology. We also address special thanks to Barbara Kucharczykova from Brno University of Technology for conducting the fracture tests whose results were used in the applications section of this paper.
References
- Bui, H.D. (1997), "Inverse problems in the mechanics of materials", Editions of the University of Karadanga.
- Cervenka, V., Jendele, L. and Cervenka, J. (2000), "ATENA Program Documentation-Part 1", Cervenka Consulting sro.
- Cochocki, A. and Unbehauen, R. (1993), Neural Networks for Optimization and Signal Processing, John Wiley and Sons, Inc..
- Cincotto, M.A., Melo, A.A. and Repette, W.L. (2003), "Effect of different activators type and dosages and relation with autogenous shrinkage of activated blast furnace slag cement", Proceedings of 11th International Congress on the Chemistry of Cement, 1878-1888, Durban, May.
- Daskiran, E.G., Daskiran, M.M. and Gencoglu, M. (2016), "Development of fine grained concretes for textile reinforced cementitious composites", Comput. Concrete, 18(2), 279-295. https://doi.org/10.12989/cac.2016.18.2.279.
- Durrett, R. (2010), Probability: Theory and Examples, Cambridge University Press, New York.
- Hordijk, D.A. (1991), "Local approach to fatigue of concrete", Ph.D. Dissertation of Philosophy, Delft University of Technology.
- Karihaloo, B.L. (1995), Fracture Mechanics and Structural Concrete, Longman Scientific and Technical, New York, USA.
- Lehky, D., Kersner, Z. and Novak, D. (2014), "FraMePID-3PB software for material parameters identification using fracture test and inverse analysis", Adv. Eng. Softw., 72, 147-154. https://doi.org/10.1016/j.advengsoft.2013.10.001.
- Lehky, D. and Somodikova, M. (2017), "Reliability calculation of time-consuming problems using a small sample artificial neural network-based response surface method", Neur. Comput. Appl., 28(6), 1249-1263. https://doi.org/10.1007/s00521-016-2485-3.
- Li, B., Chen, M. Cheng, F. and Liu, L. (2004), "The mechanical properties of polypropylene fiber reinforced concrete", J. Wuhan Univ. Tech. Mater. Sci. Ed., 19(3), 68-71. https://doi.org/10.1007/BF02835065.
- Maier, G., Bocciarelli, M., Bolzon, G. and Fedele, R. (2006), "Inverse analyses in fracture mechanics", Int. J. Fract., 138(1), 47-73. https://doi.org/10.1007/s10704-006-7153-7.
- McKay, M.D., Beckman, R.J. and Conover, W.J. (2000), "A comparison of three methods for selecting values of input variables in the analysis of output from a computer code", Technometrics, 42(1), 55-61. https://doi.org/10.1080/00401706.2000.10485979
- Menetrey, P. and Willam K.J. (1995), "Triaxial failure criterion for concrete and its generalization", ACI Struct. J., 92(3), 311-318.
- Nedeljkovic, M., Lukovic, M., Van Breguel, K., Hordijk, D. and Ye, G. (2018), "Development and application of an environmentally friendly ductile alkali-activated composite", J. Clean. Prod., 180, 524-538. https://doi.org/10.1016/j.jclepro.2018.01.162.
- Novak, D. and Lehky, D. (2006), "ANN inverse analysis based on stochastic small-sample training set simulation", Eng. Appl. Artif. Intel., 19(7), 731-740. https://doi.org/10.1016/j.engappai.2006.05.003.
- Novak, D., Vorechovsky, M. and Teply, B. (2014), "FReET: Software for the statistical and reliability analysis of engineering problems and FReET-D: Degradation module", Adv. Eng. Softw., 72, 179-192. https://doi.org/10.1016/j.advengsoft.2013.06.011.
- Provis, J.L. and Van Deventer, J.S. (2013), Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM, 13, Springer Science and Business Media.
- Ravikumar, C.S., Ramasamy, V. and Thandava-Moorthy, T.S. (2015), "Effect of fibres in concrete composites", Int. J. Appl. Eng. Res., 10(1), 419-430.
- Recommendation, R.D. (1985), "Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams", Mater. Struct., 18(106), 285-290. https://doi.org/10.1007/BF02472917
- Stavroulakis, G.E. (2001), Inverse and Crack Identification Problems in Engineering Mechanics, Springer Science and Business Media.
- Stebbings, T.F., Chandler, H.W., Henderson, R.J. and MacPhee, D.E. (2002), "Enhancing the toughness of high performance cement systems", Innov. Dev. Concrete Mater. Constr., 269-279.
- Simonova, H., Dragas, J., Kucharczykova, B., Kersner, Z., Ignjatovic, I., Komljenovic, M. and Nikolic, V. (2018), "Fracture Behaviour of Geopolymer Mortars Reinforced with Hemp Fibres", fib 2018-Better, Smarter, Stronger, 13, 583-578.
- Simonova, H., Kucharczykova, B., Bilek, V., Jr. and Kocab, D. (2020), "Mechanical fracture characterization of alkali-activated slag mortars with standardized and natural sand", MATEC Web of Conferences, SPACE 2019, 310, 00021. https://doi.org/10.1051/matecconf/202031000021.
- Ye, H., Cartwright, CH., Rajabipour, F. and Radlinska, A. (2017), "Understanding the drying shrinkage performance of alkali-activated slag mortars", Cement Concrete Compos., 76, 13-24. https://doi.org/10.1016/j.cemconcomp.2016.11.010.
- Zhou, Z.H., Wu, J. and Tang, W. (2002), "Ensembling neural networks: many could be better than all", Artif. Intel., 137(1-2), 239-263. https://doi.org/10.1016/S0004-3702(02)00190-X.
- Zimmermann, T., Strauss, A., Lehky, D., Novak, D. and Kersner, Z. (2014), "Stochastic fracture-mechanical characteristics of concrete based on experiments and inverse analysis", Constr. Build. Mater., 73, 535-543. https://doi.org/10.1016/j.conbuildmat.2014.09.087.
- Zimmermann, T. and Lehky, D. (2015), "Fracture parameters of concrete C40/50 and C50/60 determined by experimental testing and numerical simulation via inverse analysis", Int. J. Fract., 192(2), 179-189. https://doi.org/10.1007/s10704-015-9998-0.