DOI QR코드

DOI QR Code

Reactivity Evaluation on Copper Etching Using Organic Chelators

유기 킬레이터들을 이용한 구리 식각에 대한 반응성 평가

  • Received : 2021.08.05
  • Accepted : 2021.10.05
  • Published : 2021.10.27

Abstract

The reactivity evaluation of copper is performed using ethylenediamine, aminoethanol, and piperidine to apply organic chelators to copper etching. It is revealed that piperidine, which is a ring-type chelator, has the lowest reactivity on copper and copper oxide and ethylenediamine, which is a chain-type chelator, has the highest reactivity via inductively coupled plasma-mass spectroscopy (ICP-MS). Furthermore, it is confirmed that the stable complex of copper-ethylenediamine can be formed during the reaction between copper and ethylenediamine using nuclear magnetic resonance (NMR) and radio-thin layer chromatography. As a final evaluation, the copper reactivity is evaluated by wet etching using each solution. Scanning electron micrographs reveal that the degree of copper reaction in ethylenediamine is stronger than that in any other chelator. This result is in good agreement with the evaluation results obtained by ICP-MS and NMR. It is concluded that ethylenediamine is a prospective etch gas for the dry etching of the copper.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the NRF (National Research Foundation of Korea) funded by the Ministry of Education (2021R1F1A1047428). This work was also supported by the MOTIE (Ministry of Trade, Industry & Energy (10080450)) and KSRC (Korean Semiconductor Research Consortium) support program for the development of the future semiconductor device.

References

  1. A. Jain, T. T. Kodas and M. J. Hampden-Smith, Thin Solid Films, 269, 51 (1995). https://doi.org/10.1016/0040-6090(95)06877-5
  2. M. T. Bohr, Solid State Technol., 39, 105 (1996).
  3. S. Lee and Y. Kuo, Thin Solid Films, 457, 326 (2004). https://doi.org/10.1016/j.tsf.2003.10.011
  4. T. S. Choi, G. Levitin and D. W. Hess, ECS J. Solid State Sci. Technol., 2, 506 (2013).
  5. S. Lee and Y. Kuo, J. Electrochem. Soc., 148, G524 (2001). https://doi.org/10.1149/1.1392324
  6. P. A. Tamirisa, G. Levitin, N. S. Kulkarni and D. W. Hess, Microelectron. Eng., 84, 105 (2007). https://doi.org/10.1016/j.mee.2006.08.012
  7. F. Wu, G. Levitin and D. W. Hess, ACS Appl. Mater. Interfaces, 2, 2175 (2010). https://doi.org/10.1021/am1003206
  8. S. M. Rossnagel and T. S. Kuan, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., 22, 240 (2004). https://doi.org/10.1116/1.1642639
  9. W. Zhang, S. H. Brongersma, N. Heylen, G. Beyer, W. Vandervorst and K. Maex, J. Electrochem. Soc., 152, C832 (2005). https://doi.org/10.1149/1.2109507
  10. F. Wu, G. Levitin and D. W. Hess, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., 29, 011013 (2011).
  11. B. J. Howard and C. Steinbruchel, Appl. Phys. Lett., 59, 914 (1991). https://doi.org/10.1063/1.106299
  12. K. Ohno, M. Sato and Y. Arita, J. Electrochem. Soc., 143, 4089 (1996). https://doi.org/10.1149/1.1837341
  13. J. W. Lee, Y. D. Park, J. R. Childress, S. J. Pearton, F. Shariff and F. Ren, J. Electrochem. Soc., 145, 2585 (1998). https://doi.org/10.1149/1.1838685
  14. M. S. Kwon and J. Y. Lee, J. Electrochem. Soc., 146, 3119 (1999). https://doi.org/10.1149/1.1392441
  15. S. W. Kang, H. U. Kim and S. W. Rhee, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., 17, 154 (1999). https://doi.org/10.1116/1.590528
  16. F. Wu, G. Levitin and D. W. Hess, J. Electrochem. Soc., 159, H121 (2011). https://doi.org/10.1149/2.015202jes
  17. E. T. Lim, J. S. Ryu and C. W. Chung, Thin Solid Films, 665, 51 (2018). https://doi.org/10.1016/j.tsf.2018.08.046
  18. E. T. Lim, J. S. Ryu, J. S. Choi and C. W. Chung, Vacuum, 167, 145 (2019). https://doi.org/10.1016/j.vacuum.2019.05.046
  19. J. S. Ryu, E. T. Lim, J. S. Choi and C. W. Chung, Thin Solid Films, 672, 55 (2019). https://doi.org/10.1016/j.tsf.2018.12.042