DOI QR코드

DOI QR Code

함수회귀분석을 통한 교통량 예측

Functional regression approach to traffic analysis

  • Lee, Injoo (Department of Statistics, Kangwon National University) ;
  • Lee, Young K. (Department of Statistics, Kangwon National University)
  • 투고 : 2021.08.30
  • 심사 : 2021.09.07
  • 발행 : 2021.10.31

초록

교통량 예측은 지방 행정의 의사결정에 매우 중요한 정보를 제공한다. 교통량 예측을 통해 교통혼잡비용을 줄이고 지역경제를 활성화 함으로써 사회적, 경제적 이익을 창출할 수 있다. 교통량은 미지의 확률적 규칙하에서 시간의 흐름에 따라 궤적을 가지며 변화하는 함수데이터의 일종이다. 본 논문에서는 세 가지 함수회귀모형을 이용하여 과거에 관측된 교통량 궤적을 기반으로 미래의 관측되지 않은 교통량 궤적을 예측하는 방법을 제시한다. 본 논문에서 소개하는 세가지 방법은 전국 고속도로 영업소 중 서울, 춘천, 강릉 세 개 영업소에서 수집된 고속도로 영업소 데이터에 적용한다. 각 영업소 별로 세가지 방법의 예측오차를 비교함으로써 영업소별 최적 교통량 예측모형을 찾는다.

Prediction of vehicle traffic volume is very important in planning municipal administration. It may help promote social and economic interests and also prevent traffic congestion costs. Traffic volume as a time-varying trajectory is considered as functional data. In this paper we study three functional regression models that can be used to predict an unseen trajectory of traffic volume based on already observed trajectories. We apply the methods to highway tollgate traffic volume data collected at some tollgates in Seoul, Chuncheon and Gangneung. We compare the prediction errors of the three models to find the best one for each of the three tollgate traffic volumes.

키워드

과제정보

이 논문은 한국연구재단 중견연구사업의 지원을 받아 수행된 연구임(NRF-2021R1A2C1003920)

참고문헌

  1. An SY (2017). A study on the optimal traffic flow by highway section. Master's thesis, Inje University.
  2. Choo S, Lee SM, Park YI, and Yun J (2007). A study on methods for constructing weekend origin/destination travel, The Korea Transport Institute.
  3. Hsing T and Eubank R (2015). Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators. Wiley.
  4. Hunt JD, McMillan P, Stefan K, and Atkins D (2005). Nature of weekend travel by urban households, 2005 Annual Conference of the Transportation Association of Canada.
  5. Jeon JM and Park BU (2020). Additive regression with Hilbertian responses, The Annals of Statistics, 48, 2671-2697.
  6. Kato T (1995). Perturbation theory for linear operators. Berlin: Springer-Verlag.
  7. Mammen E, Linton O, and Nielsen JP (1999). The existence and asymptotic properties of a backfitting projection algorithm under weak conditions, The Annals of Statistics, 27, 1443-1490. https://doi.org/10.1214/aos/1017939138
  8. Muller HG and Yao F (2008). Functional additive models, Journal of the American Statistical Association, 103, 1534-1544. https://doi.org/10.1198/016214508000000751
  9. Park BU, Chen CJ, Tao W, and Muller HG (2018). Singular additive models for function to function regression, Statistica Sinica, 28, 2497-2520.
  10. Park MJ (2015). Traffic prediction technology development using big data, Monthly KOTI Magagine on Transport, 42-46.
  11. Sohn C and Kim GH (2014). Influences of weather on the inbound traffic volume of a tourist destination, The Korea spatial planning review, 99-111.
  12. Yang W, Muller HG, and Stadtmuller U (2011). Functional singular component analysis, Journal of the Royal Statistical Society: Series B Statistical Methodology, 73, 303-324. https://doi.org/10.1111/j.1467-9868.2010.00769.x
  13. Yoon SY, Lee CY, Kim HJ, Yook DH, and Kim SR (2017). A study on usability of big data to enhance reliability of regional travel demand forecasting, Korea Research Institute for Human Settlements.